Calibration of a Jump-Diffusion Process Using Optimal Control

被引:1
|
作者
Kiessling, Jonas [1 ]
机构
[1] Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
来源
NUMERICAL ANALYSIS OF MULTISCALE COMPUTATIONS | 2012年 / 82卷
关键词
STOCHASTIC VOLATILITY; OPTIONS;
D O I
10.1007/978-3-642-21943-6_12
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A method for calibrating a jump-diffusion model to observed option prices is presented. The calibration problem is formulated as an optimal control problem, with the model parameters as the control variable. It is well known that such problems are ill-posed and need to be regularized. A Hamiltonian system, with non-differentiable Hamiltonian, is obtained from the characteristics of the corresponding Hamilton-Jacobi-Bellman equation. An explicit regularization of the Hamiltonian is suggested, and the regularized Hamiltonian system is solved with a symplectic Euler method. The paper is concluded with some numerical experiments on real and artificial data.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 50 条
  • [11] On the calibration of local jump-diffusion asset price models
    S. Kindermann
    P. A. Mayer
    Finance and Stochastics, 2011, 15 : 685 - 724
  • [12] OPTIMAL INVESTMENT TIMING FOR CARBON EMISSION REDUCTION TECHNOLOGY WITH A JUMP-DIFFUSION PROCESS
    Huang, Wenlin
    Liang, Jin
    Guo, Huaying
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (05) : 4024 - 4050
  • [13] Optimal portfolio selection when stock prices follow an jump-diffusion process
    Wenjing Guo
    Chengming Xu
    Mathematical Methods of Operations Research, 2004, 60 : 485 - 496
  • [14] Optimal Reinsurance-Investment Problem for an Insurer and a Reinsurer with Jump-Diffusion Process
    Hu, Hanlei
    Yin, Zheng
    Gao, Xiujuan
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [15] OPTIMAL DIVIDEND PAYMENTS WHEN CASH RESERVES FOLLOW A JUMP-DIFFUSION PROCESS
    Belhaj, Mohamed
    MATHEMATICAL FINANCE, 2010, 20 (02) : 313 - 325
  • [16] Optimal portfolio selection when stock prices follow an jump-diffusion process
    Guo, WJ
    Xu, CM
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2004, 60 (03) : 485 - 496
  • [17] OPTIMAL PORTFOLIO AND CONSUMPTION FOR A MARKOVIAN REGIME-SWITCHING JUMP-DIFFUSION PROCESS
    Zhang, Caibin
    Liang, Zhibin
    Yuen, Kam Chuen
    ANZIAM JOURNAL, 2021, 63 (03): : 308 - 332
  • [18] Image segmentation: Jump-diffusion process approach
    Trubuil, A
    Stryhn, H
    Hoebeke, M
    STUDY ON SPATIAL PHENOMENA IN AGRICULTURE, 1996, (78): : 81 - +
  • [19] Exponential Ergodicity of the Jump-Diffusion CIR Process
    Jin, Peng
    Ruediger, Barbara
    Trabelsi, Chiraz
    STOCHASTICS OF ENVIRONMENTAL AND FINANCIAL ECONOMICS, 2016, 138 : 285 - 300
  • [20] Moments and ergodicity of the jump-diffusion CIR process
    Jin, Peng
    Kremer, Jonas
    Ruediger, Barbara
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (07) : 974 - 997