Gait Identification Based on Hidden Markov Model

被引:0
|
作者
Zhao, XiLing [1 ]
Shang, XinHua [1 ]
机构
[1] Xinyang Agr Coll, Dept Comp Sci, Xinyang, Peoples R China
关键词
Gait recognition; Hidden Markov Model; K-means Algorithm; Overflow; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians (G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. Improved training process can be solved arithmetic overflow. Finally, the recognition is achieved by HMM. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.
引用
收藏
页码:812 / 815
页数:4
相关论文
共 50 条
  • [21] Hidden Markov model-based P2P flow identification: a hidden Markov model-based P2P flow identification method
    Xu, B.
    Chen, M.
    Wei, X.
    IET COMMUNICATIONS, 2012, 6 (13) : 2091 - 2098
  • [22] A novel gait quality measure for characterizing pathological gait based on Hidden Markov Models
    Halimi, Abdelghani
    Hermez, Lorenzo
    Houmani, Nesma
    Garcia-Salicetti, Sonia
    Galarraga, Omar
    Computers in Biology and Medicine, 2025, 184
  • [23] Continuous Hidden Markov Model for Pedestrian Activity Classification and Gait Analysis
    Panahandeh, Ghazaleh
    Mohammadiha, Nasser
    Leijon, Arne
    Handel, Peter
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2013, 62 (05) : 1073 - 1083
  • [24] Human Gait Modelling Using Hidden Markov Model For Abnormality Detection
    Chattopadhyay, Sourav
    Nandy, Anup
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 0623 - 0628
  • [25] Human Gait Phase Recognition using a Hidden Markov Model Framework
    Attal, Ferhat
    Amirat, Yacine
    Chibani, Abdelghani
    Mohammed, Samer
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10299 - 10304
  • [26] Research on identification method of heavy vehicle rollover based on hidden Markov model
    Zhao, Zhiguo
    Wang, Yeqin
    Hu, Xiaoming
    Tao, Yukai
    Wang, Jinsheng
    OPEN PHYSICS, 2017, 15 (01): : 479 - 485
  • [27] An improved method for lithology identification based on a hidden Markov model and random forests
    Wang, Pu
    Chen, Xiaohong
    Wang, Benfeng
    Li, Jingye
    Dai, Hengchang
    GEOPHYSICS, 2020, 85 (06) : IM27 - IM36
  • [28] Ship Communication Network Intrusion Signal Identification Based on Hidden Markov Model
    Wu, Weimin
    JOURNAL OF COASTAL RESEARCH, 2018, : 868 - 871
  • [29] A novel model for user clicks identification based on hidden semi-Markov
    Xu, C.
    Du, C.
    Zhao, G. F.
    Yu, S.
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2013, 36 (02) : 791 - 798
  • [30] Research on a method of load identification based on multi parameter hidden Markov model
    Zhang L.
    Zhang T.
    Zhang H.
    Wang F.
    Guo J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2019, 47 (20): : 81 - 90