Gas exchange and chlorophyll fluorescence of C3 and C4 saltmarsh species

被引:63
|
作者
Nieva, FJJ
Castellanos, EM
Figueroa, ME
Gil, F
机构
[1] Univ Sevilla, Dept Biol Vegetal & Ecol, Seville 41080, Spain
[2] Univ Huelva, Fac Ciencias Expt, Dept Ciencias Agroforestales, Huelva 21071, Spain
关键词
Arthrocnemum; C-3 and C-4 plants; halophytes; intercellular CO2 concentration; leaf gas exchange; net photosynthetic rate; Spartina; stomatal conductance; transpiration rate; water potential;
D O I
10.1023/A:1007024019133
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Spartina maritima (Curtis) Fernald, Spartina densiflora Brong, Arthrocnemum perenne (Miller) Moss, and Arthrocnemum fruticosum (L.) Moq are very frequent halophytes on the coasts of SW Europe. The first two are perennial Gramineae with C-4 metabolism; the last two are perennial Chenopodiaceae with C-3 metabolism. Controlled garden experiments were carried out with the four species to compare their physiological response, i.e., water potential (Psi), net photosynthetic rate (P-N), transpiration rate (E), stomatal conductance (g(s)), intercellular CO2 concentration (C-i), and chlorophyll fluorescence of photosystem (PS) 2 under saline and non-saline conditions. S. maritima behaves as an osmoconformer species, the other three as osmoregulators. in the four species, P-N, E, and g(s) improved following freshwater irrigation. The variations in P-N might be related with biochemical changes (which appear not to affect PS2), but not with significant stomatal fluctuations, which are associated with a lower water use efficiency in the case of Arthrocnemum. The species were segregated into two groups (not depending on their C-3 or C-4 photosynthetic pathway), in relation with the topographic level of this species in natural conditions: the relative responses of P-N in S. maritima and A. perenne were lower than those of S. densiflora and A. fruticosum. The salt-tolerance index supports such segregation. S. densiflora demonstrated the best competitive possibilities against salt-tolerant glycophytes, with its more flexible response in saline or brackish environments, which explains its spreading along the rivets draining into the estuaries of the SW Iberian Peninsula.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 50 条
  • [31] The temperature response of C3 and C4 photosynthesis
    Sage, Rowan F.
    Kubien, David S.
    PLANT CELL AND ENVIRONMENT, 2007, 30 (09): : 1086 - 1106
  • [32] FERMENTATION ROUTES TO ...... C3 AND C4 CHEMICALS
    TONG, GE
    CHEMICAL ENGINEERING PROGRESS, 1978, 74 (04) : 70 - 74
  • [33] PEP CARBOXYLASES IN C3 AND C4 PLANTS
    TING, IP
    OSMOND, CB
    PLANT PHYSIOLOGY, 1972, 49 : 58 - &
  • [34] THE PRODUCTIVITY OF C3 AND C4 PLANTS - A REASSESSMENT
    SNAYDON, RW
    FUNCTIONAL ECOLOGY, 1991, 5 (03) : 321 - 330
  • [35] THE REGULATION OF PHOSPHORIBULOKINASE IN C3 AND C4 PLANTS
    Ruffer-Turner, M. E.
    Bradbeer, J. W.
    PLANT PHYSIOLOGY, 1984, 75 : 52 - 52
  • [36] Photorespiration connects C3 and C4 photosynthesis
    Braeutigam, Andrea
    Gowik, Udo
    JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (10) : 2953 - 2962
  • [37] The Path from C3 to C4 Photosynthesis
    Gowik, Udo
    Westhoff, Peter
    PLANT PHYSIOLOGY, 2011, 155 (01) : 56 - 63
  • [38] C4 nephritic factor in C3 glomerulopathy
    Zhang, Yuzhou
    Nester, Carla M.
    Smith, Richard J. H.
    MOLECULAR IMMUNOLOGY, 2014, 61 (02) : 227 - 227
  • [39] Root segregation of C3 and C4 species using carbon isotope composition
    Eleki, K
    Cruse, RM
    Albrecht, KA
    CROP SCIENCE, 2005, 45 (03) : 879 - 882
  • [40] Photosynthetic responses of C3 and C4 species to seasonal water variability and competition
    Niu, SL
    Yuan, ZY
    Zhang, YF
    Liu, WX
    Zhang, L
    Huang, JH
    Wan, SQ
    JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (421) : 2867 - 2876