Hyperspectral data noise characterization using principle component analysis: application to the atmospheric infrared sounder

被引:26
|
作者
Tobin, David C. [1 ]
Antonelli, Paolo [1 ]
Revercomb, Henry E. [1 ]
Dutcher, Steven [1 ]
Turner, David D. [1 ]
Taylor, Joe K. [1 ]
Knuteson, Robert O. [1 ]
Vinson, Kenneth [1 ]
机构
[1] Univ Wisconsin, Ctr Space Sci & Engn, Madison, WI 53706 USA
来源
关键词
Hyperspectral; Satellite; Noise; NEDT; Characterization;
D O I
10.1117/1.2757707
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Exploiting the inherent redundancy in hyperspectral observations, Principle Component Analysis (PCA) is a simple yet very powerful tool not only for noise filtering and lossy compression, but also for the characterization of sensor noise and other variable artifacts using Earth scene data. Our approach for dependent set PCA of radiance spectra from the Atmospheric Infrared Sounder (AIRS) on NASA Aqua is presented. Aspects of the analyses include 1) estimation of NEDT and comparisons to values derived from on-board blackbodies, 2) estimation of the signal dependence of NEDN, 3) estimation of the spectrally correlated component of NEDT, 4) investigation of non-Gaussian noise behavior, and 5) inspection of individual PCs. The results are generally consistent with results obtained prelaunch and on-orbit using blackbody and space view data. Specific findings include: 1) PCA estimates of AIRS spectrally random and spectrally correlated NEDN compare well with estimates computed from blackbody and space views, 2) the signal dependence of AIRS NEDN is accurately parameterized in terms of scene radiance, 3) examination of the reconstruction error allows non-Gaussian phenomenon such as popping to be characterized, and 4) inspection of the PCs and filtered spectra is a powerful technique for diagnosing variable artifacts in hyperspectral data.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] FUSION OF HYPERSPECTRAL AND LIDAR DATA USING MORPHOLOGICAL COMPONENT ANALYSIS
    Xu, Xiang
    Li, Fun
    Plaza, Antonio
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3575 - 3578
  • [32] Retrieval of atmospheric sulfur dioxide and nitric acid using the Atmospheric Infrared Sounder (AIRS)
    Hannon, Scott
    Strow, L. Larrabee
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIII, 2007, 6565
  • [33] Noise reduction of hyperspectral data using singular spectral analysis
    Hu, Baoxin
    Li, Qingmou
    Smith, A.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (09) : 2277 - 2296
  • [34] Retrieval of ozone profiles from geostationary infrared sounder observations using principal component analysis
    Jindal, P.
    Shukla, M. V.
    Sharma, S. K.
    Thapliyal, P. K.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (701) : 3015 - 3025
  • [35] Development and Application of Atmospheric Infrared Sounder Ozone Retrieval Products for Operational Meteorology
    Berndt, Emily B.
    Zavodsky, Bradley T.
    Folmer, Michael J.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (02): : 958 - 967
  • [36] Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data
    Stephan, K.
    Hibbitts, C. A.
    Hoffmann, H.
    Jaumann, R.
    PLANETARY AND SPACE SCIENCE, 2008, 56 (3-4) : 406 - 419
  • [37] Hyperspectral Infrared Sounder Cloud Detection Using Deep Neural Network Model
    Liu, Qian
    Xu, Hui
    Sha, Dexuan
    Lee, Tsengdar
    Duffy, Daniel Q.
    Walter, Jeff
    Yang, Chaowei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [38] Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder
    Clerbaux, C.
    Boynard, A.
    Clarisse, L.
    George, M.
    Hadji-Lazaro, J.
    Herbin, H.
    Hurtmans, D.
    Pommier, M.
    Razavi, A.
    Turquety, S.
    Wespes, C.
    Coheur, P. -F.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) : 6041 - 6054
  • [39] Hyperspectral image analysis using Noise-Adjusted Principal Component transform
    Du, Qian
    Raksuntorn, Nareenart
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
  • [40] Hyperspectral image classification using principle component analysis and deep convolutional neural network
    Shinde S.
    Patidar H.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (12) : 16491 - 16497