Generic algorithms for solving ODE using the Tau method with an error estimation

被引:2
|
作者
Adeniyi, RB [1 ]
Olugbara, OO [1 ]
Taiwo, OA [1 ]
机构
[1] Univ Ilorin, Dept Math Comp Sci, Ilorin, Nigeria
关键词
polynomial coefficients; generic algorithms; Tau method; Tau object class hierarchy; interface definition language;
D O I
10.1080/00207169908804835
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Tau method is an accurate and efficient method for the numerical solution of ordinary differential equation (O.D.E) with polynomial coefficients. In [1] Adeniyi et al., we derived a recursive formula for a fast reliable computational error estimate of Tau method. In the present work, we present the generic algorithms for solving O.D.E. using the Tau method. The pseudocodes describing the algorithms are in C-like language. The algorithms are assembled into a reusable Tau objects' Class Hierarchy (TOCH) with specification given in the interface definition language (IDL) representation and implemented using the C+ + Programming language.
引用
收藏
页码:63 / 80
页数:18
相关论文
共 50 条
  • [1] ERROR ESTIMATION IN THE NUMERICAL-SOLUTION OF ODE WITH THE TAU METHOD
    ADENIYI, RB
    ONUMANYI, P
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) : 19 - 27
  • [2] ON THE OPTIMAL ERROR OF ALGORITHMS FOR SOLVING A SCALAR AUTONOMOUS ODE
    KACEWICZ, B
    [J]. BIT, 1982, 22 (04): : 503 - 518
  • [3] An Online Sample-Based Method for Mode Estimation Using ODE Analysis of Stochastic Approximation Algorithms
    Kamanchi, Chandramouli
    Diddigi, Raghuram Bharadwaj
    Prabuchandran, K. J.
    Bhatnagar, Shalabh
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 697 - 702
  • [4] An ODE method of solving nonlinear programming
    Zhou, ZF
    Shi, Y
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (01) : 97 - 102
  • [5] An explicit method for solving flows of ODE
    Tasic, B
    Mattheij, RMM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) : 633 - 652
  • [6] Solving Generic Nonarchimedean Semidefinite Programs Using Stochastic Game Algorithms
    Allamigeon, Xavier
    Gaubert, Stephane
    Skomra, Mateusz
    [J]. PROCEEDINGS OF THE 2016 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC 2016), 2016, : 31 - 38
  • [7] Solving generic nonarchimedean semidefinite programs using stochastic game algorithms
    Allamigeon, Xavier
    Gaubert, Stephane
    Skomra, Mateusz
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2018, 85 : 25 - 54
  • [8] UPPER AND LOWER ERROR ESTIMATION FOR THE TAU METHOD AND RELATED POLYNOMIAL TECHNIQUES
    KHAJAH, HG
    ORTIZ, EL
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 22 (03) : 81 - 87
  • [9] Adaptive error estimation of the Trefftz method for solving the Cauchy problem
    Chen, C. -T.
    Chen, K. -H.
    Lee, J. -F.
    Chen, J. -T.
    [J]. BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXIX, 2007, 44 : 43 - +
  • [10] Monte Carlo Method for Solving ODE Systems
    S. M. Ermakov
    T. M. Tovstik
    [J]. Vestnik St. Petersburg University, Mathematics, 2019, 52 : 272 - 280