Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways

被引:67
|
作者
Chatterjee, Sudipta [1 ,2 ]
Huang, Kuo-Wei [1 ,2 ]
机构
[1] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
关键词
CO2; CAPTURE;
D O I
10.1038/s41467-020-17203-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Energy consumption and performance optimization of moisture swing sorbents for direct air capture of CO2
    Ni, Jia
    Sun, Xueyan
    Shui, Ziyi
    He, Feihong
    Hui, Xiaomin
    Zhu, Liangliang
    Chen, Xi
    [J]. Huagong Xuebao/CIESC Journal, 2021, 72 (03): : 1409 - 1418
  • [42] The road to achieving the long-term Paris targets: energy transition and the role of direct air capture
    Marcucci, Adriana
    Kypreos, Socrates
    Panos, Evangelos
    [J]. CLIMATIC CHANGE, 2017, 144 (02) : 181 - 193
  • [43] Life Cycle Assessment of Direct Air Carbon Capture and Storage with Low-Carbon Energy Sources
    Terlouw, Tom
    Treyer, Karin
    Bauer, Christian
    Mazzotti, Marco
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (16) : 11397 - 11411
  • [44] The road to achieving the long-term Paris targets: energy transition and the role of direct air capture
    Adriana Marcucci
    Socrates Kypreos
    Evangelos Panos
    [J]. Climatic Change, 2017, 144 : 181 - 193
  • [45] Atmospheric CO2 as a resource for renewable energy production: A European energy law appraisal of direct air capture fuels
    Schaller, Romina
    Markus, Till
    Korte, Klaas
    Gawel, Erik
    [J]. REVIEW OF EUROPEAN COMPARATIVE & INTERNATIONAL ENVIRONMENTAL LAW, 2022, 31 (02) : 258 - 267
  • [46] Closing the carbon cycle to maximise climate change mitigation: power-to-methanol vs. power-to-direct air capture
    Daggash, H. A.
    Patzschke, C. F.
    Heuberger, C. F.
    Zhu, L.
    Hellgardt, K.
    Fennell, P. S.
    Bhave, A. N.
    Bardow, A.
    Mac Dowell, N.
    [J]. SUSTAINABLE ENERGY & FUELS, 2018, 2 (06): : 1153 - 1169
  • [47] Ionic Liquid-Glycol Mixtures for Direct Air Capture of CO2: Decreased Viscosity and Mitigation of Evaporation Via Encapsulation
    Taylor, Cameron D. L.
    Klemm, Aidan
    Al-Mahbobi, Luma
    Bradford, B. Jack
    Gurkan, Burcu
    Pentzer, Emily B.
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (20): : 7882 - 7893
  • [48] Energy-efficient and water-saving sorbent regeneration at near room temperature for direct air capture
    Ji, T.
    Zhai, H.
    Wang, C.
    Marin, C. M.
    Wilfong, W. C.
    Wang, Q.
    Duan, Y.
    Xia, R.
    Jiao, F.
    Soong, Y.
    Shi, F.
    Gray, M.
    [J]. MATERIALS TODAY SUSTAINABILITY, 2023, 21
  • [49] Assessing the physical potential capacity of direct air capture with integrated supply of low-carbon energy sources
    Fahr, Steffen
    Powell, Julian
    Favero, Alice
    Giarrusso, Anthony J.
    Lively, Ryan P.
    Realff, Matthew J.
    [J]. GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2022, 12 (01): : 170 - 188
  • [50] Cost Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal Energy in the United States
    McQueen, Noah
    Psarras, Peter
    Pilorge, Helene
    Liguori, Simona
    He, Jiajun
    Yuan, Mengyao
    Woodall, Caleb M.
    Kian, Kourosh
    Pierpoint, Lara
    Jurewicz, Jacob
    Lucas, J. Matthew
    Jacobson, Rory
    Deich, Noah
    Wilcox, Jennifer
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (12) : 7542 - 7551