Large deviations of the length of the longest increasing subsequence of random permutations and random walks

被引:10
|
作者
Boerjes, Joern [1 ]
Schawe, Hendrik [1 ]
Hartmann, Alexander K. [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
关键词
DISTRIBUTIONS;
D O I
10.1103/PhysRevE.99.042104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study numerically the length distribution of the longest increasing subsequence (LIS) for random permutations and one-dimensional random walks. Using sophisticated large-deviation algorithms, we are able to obtain very large parts of the distribution, especially also covering probabilities smaller than 10(-1000). This enables us to verify for the length of the LIS of random permutations the analytically known asymptotics of the rate function and even the whole Tracy-Widom distribution. We observe a rather fast convergence in the larger than typical part to this limiting distribution. For the length L of LIS of random walks no analytical results are known to us. We test a proposed scaling law and observe convergence of the tails into a collapse for increasing system size. Further, we obtain estimates for the leading-order behavior of the rate functions in both tails.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Law of large numbers for increasing subsequences of random permutations
    Pinsky, Ross G.
    RANDOM STRUCTURES & ALGORITHMS, 2006, 29 (03) : 277 - 295
  • [42] Large deviations for transient random walks in random environment on a Galton-Watson tree
    Aidekon, Elie
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01): : 159 - 189
  • [43] Entropy inequalities for random walks and permutations
    Bristiel, Alexandre
    Caputo, Pietro
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 54 - 81
  • [44] Kardar–Parisi–Zhang Equation and Large Deviations for Random Walks in Weak Random Environments
    Ivan Corwin
    Yu Gu
    Journal of Statistical Physics, 2017, 166 : 150 - 168
  • [45] MODERATE DEVIATIONS FOR STABLE RANDOM WALKS IN RANDOM SCENERY
    Li, Yuqiang
    JOURNAL OF APPLIED PROBABILITY, 2012, 49 (01) : 280 - 294
  • [46] LARGE DEVIATIONS FOR POISSON SYSTEMS OF INDEPENDENT RANDOM-WALKS
    COX, JT
    GRIFFEATH, D
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (04): : 543 - 558
  • [47] On large deviations probabilities for random walks with regular distribution of jumps
    Borovkov, AA
    Borovkov, KA
    DOKLADY AKADEMII NAUK, 2000, 371 (01) : 14 - 16
  • [48] Functional large deviations for multivariate regularly varying random walks
    Hult, H
    Lindskog, F
    Mikosch, T
    Samorodnitsky, G
    ANNALS OF APPLIED PROBABILITY, 2005, 15 (04): : 2651 - 2680
  • [49] LARGE DEVIATIONS FOR RANDOM WALKS ON GROMOV-HYPERBOLIC SPACES
    Boulanger, Adrien
    Mathieu, Pierre
    Sert, Cagri
    Sisto, Alessandro
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (03): : 885 - 944
  • [50] On Large Deviations of Multivariate Heavy-Tailed Random Walks
    Harri Nyrhinen
    Journal of Theoretical Probability, 2009, 22 : 1 - 17