Large deviations of the length of the longest increasing subsequence of random permutations and random walks

被引:10
|
作者
Boerjes, Joern [1 ]
Schawe, Hendrik [1 ]
Hartmann, Alexander K. [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
关键词
DISTRIBUTIONS;
D O I
10.1103/PhysRevE.99.042104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study numerically the length distribution of the longest increasing subsequence (LIS) for random permutations and one-dimensional random walks. Using sophisticated large-deviation algorithms, we are able to obtain very large parts of the distribution, especially also covering probabilities smaller than 10(-1000). This enables us to verify for the length of the LIS of random permutations the analytically known asymptotics of the rate function and even the whole Tracy-Widom distribution. We observe a rather fast convergence in the larger than typical part to this limiting distribution. For the length L of LIS of random walks no analytical results are known to us. We test a proposed scaling law and observe convergence of the tails into a collapse for increasing system size. Further, we obtain estimates for the leading-order behavior of the rate functions in both tails.
引用
收藏
页数:7
相关论文
共 50 条