Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization

被引:55
|
作者
Chen, Xu [1 ,2 ]
Mei, Congli [1 ]
Xu, Bin [3 ]
Yu, Kunjie [4 ]
Huang, Xiuhui [5 ]
机构
[1] Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] East China Univ Sci & Technol, Minist Educ, Key Lab Adv Control & Optimizat Chem Proc, Shanghai 200237, Peoples R China
[3] Shanghai Univ Engn Sci, Sch Mech Engn, Shanghai 201620, Peoples R China
[4] Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Henan, Peoples R China
[5] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai 200093, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Dynamic system optimization; Chemical processes; Global optimization; Teaching-learning-based optimization; Quadratic interpolation; CONTROLLED RANDOM SEARCH; DIFFERENTIAL EVOLUTION; GLOBAL OPTIMIZATION; PARAMETER-ESTIMATION; GENETIC ALGORITHM; MULTIOBJECTIVE OPTIMIZATION; APPROXIMATION; PARALLEL; DESIGN; MODELS;
D O I
10.1016/j.knosys.2018.01.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimal design and control of industrially important chemical processes rely on dynamic optimization. However, because of the highly constrained, nonlinear, and sometimes discontinuous nature that is inherent in chemical processes, solving dynamic optimization problems (DOPs) is still a challenging task. Teaching-learning-based optimization (TLBO) is a relative new metaheuristic algorithm based on the philosophy of teaching and learning. In this paper, we propose an improved TLBO called quadratic interpolation based TLBO (QITLBO) for handling DOP5 efficiently. In the QITLBO, two modifications, namely diversity enhanced teaching strategy and quadratic interpolation operator, are introduced into the basic TLBO. The diversity enhanced teaching strategy is employed to improve the exploration ability, and the quadratic interpolation operator is used to enhance the exploitation ability; therefore, the ensemble of these two components can establish a better balance between exploration and exploitation. To test the performance of the proposed method, QITLBO is applied to solve six chemical DOPs include three parameter estimation problems and three optimal control problems, and compared with eleven well-established metaheuristic algorithms. Computational results reveal that QITLBO has the best precision and reliability among the compared algorithms for most of the test problems. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:250 / 263
页数:14
相关论文
共 50 条
  • [21] Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm
    Toopshekan, Ashkan
    Abedian, Ali
    Azizi, Arian
    Ahmadi, Esmaeil
    Rad, Mohammad Amin Vaziri
    ENERGY, 2023, 285
  • [22] Collective information-based teaching-learning-based optimization for global optimization
    Peng, Zi Kang
    Zhang, Sheng Xin
    Zheng, Shao Yong
    Long, Yun Liang
    SOFT COMPUTING, 2019, 23 (22) : 11851 - 11866
  • [23] Teaching-learning-based optimization algorithm with dynamic neighborhood and crossover search mechanism for numerical optimization
    Zeng, Zhibo
    Dong, He
    Xu, Yunlang
    Zhang, Wei
    Yu, Hangcheng
    Li, Xiaoping
    APPLIED SOFT COMPUTING, 2024, 154
  • [24] Elitist teaching-learning-based optimization algorithm based on feedback
    Yu, Kun-Jie
    Wang, Xin
    Wang, Zhen-Lei
    Zidonghua Xuebao/Acta Automatica Sinica, 2014, 40 (09): : 1976 - 1983
  • [25] Strengthened teaching-learning-based optimization algorithm for numerical optimization tasks
    Chen, Xuefen
    Ye, Chunming
    Zhang, Yang
    Zhao, Lingwei
    Guo, Jing
    Ma, Kun
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (03) : 1463 - 1480
  • [26] Multi-Objective Teaching-Learning-Based Optimization for Structure Optimization
    Kumar, Sumit
    Tejani, Ghanshyam G.
    Pholdee, Nantiwat
    Bureerat, Sujin
    Jangir, Pradeep
    SMART SCIENCE, 2022, 10 (01) : 56 - 67
  • [27] A modified teaching-learning-based optimization algorithm for solving optimization problem
    Ma, Yunpeng
    Zhang, Xinxin
    Song, Jiancai
    Chen, Lei
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [28] Fuzzy adaptive teaching-learning-based optimization for global numerical optimization
    Cheng, Min-Yuan
    Prayogo, Doddy
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (02): : 309 - 327
  • [29] A modified teaching-learning-based optimization algorithm for numerical function optimization
    Niu, Peifeng
    Ma, Yunpeng
    Yan, Shanshan
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (06) : 1357 - 1371
  • [30] Teaching evaluation on a WebGIS course based on dynamic self-adaptive teaching-learning-based optimization
    Hou Jing-wei
    Jia Ke-li
    Jiao Xue-jun
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (03) : 640 - 653