Time-dependent approach to many-particle tunneling in one dimension

被引:26
|
作者
Maruyama, Takahito [1 ]
Oishi, Tomohiro [1 ]
Hagino, Kouichi [1 ]
Sagawa, Hiroyuki [2 ,3 ]
机构
[1] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[2] Univ Aizu, Ctr Math & Phys, Aizu Wakamatsu, Fukushima 9658560, Japan
[3] RIKEN Nishina Ctr, Wako, Saitama 3510198, Japan
来源
PHYSICAL REVIEW C | 2012年 / 86卷 / 04期
关键词
DECAY; MODEL; IONIZATION;
D O I
10.1103/PhysRevC.86.044301
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
By employing the time-dependent approach, we investigate a quantum tunneling decay of many-particle systems. We apply it to a schematic one-dimensional three-body model with a heavy-core nucleus and two valence protons. We calculate the decay width for two-proton emission from the survival probability, which well obeys the exponential decay law after a sufficient time. The effect of the correlation between the two emitted protons is also studied by observing the time evolution of the two-particle density distribution. It is shown that the pairing correlation significantly enhances the probability for the simultaneous diproton decay.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the time-dependent Cattaneo law in space dimension one
    Conti, Monica
    Pata, Vittorino
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 32 - 44
  • [22] Statistics of energy partitions for many-particle systems in arbitrary dimension
    Aquilanti, Vincenzo
    Lombardi, Andrea
    Sevryuk, Mikhail B.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (03): : 318 - 347
  • [23] Statistics of energy partitions for many-particle systems in arbitrary dimension
    Vincenzo Aquilanti
    Andrea Lombardi
    Mikhail B. Sevryuk
    Regular and Chaotic Dynamics, 2014, 19 : 318 - 347
  • [24] TIME INVERSION AND MOBILITY OF MANY-PARTICLE SYSTEMS
    WANIEWSKI, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 76 (01) : 27 - 37
  • [25] Numerical solution of the time-dependent Schrodinger equation in one dimension
    Wong, Bernardine Renaldo
    JURNAL FIZIK MALAYSIA, 2007, 28 (1-2): : 29 - 34
  • [26] DOMAIN GROWTH WITH TIME-DEPENDENT FRONT VELOCITY IN ONE DIMENSION
    OHTA, T
    ENOMOTO, Y
    KATO, R
    PHYSICAL REVIEW B, 1991, 43 (16) : 13262 - 13268
  • [27] INTEGRALS FOR TIME-DEPENDENT COMPLEX DYNAMICAL SYSTEM IN ONE DIMENSION
    Virdi, Jasvinder Singh
    ROMANIAN JOURNAL OF PHYSICS, 2012, 57 (9-10): : 1270 - 1277
  • [28] Transparent Dirac potentials in one dimension: The time-dependent case
    Dunne, Gerald V.
    Thies, Michael
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [29] TIME-DEPENDENT TUNNELING IN HETEROSTRUCTURES
    JAUHO, AP
    ACTA POLYTECHNICA SCANDINAVICA-ELECTRICAL ENGINEERING SERIES, 1987, (58): : 192 - 221
  • [30] Tunneling in a time-dependent setting
    KeskiVakkuri, E
    Kraus, P
    PHYSICAL REVIEW D, 1996, 54 (12) : 7407 - 7420