Block Tensor Train Decomposition for Missing Value Imputation

被引:0
|
作者
Lee, Namgil [1 ]
机构
[1] Kangwon Natl Univ, Chunchon, South Korea
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new method for imputation of missing values in large scale matrix data based on a low-rank tensor approximation technique called the block tensor train ( TT) decomposition. Given sparsely observed data points, the proposed method iteratively computes the soft-thresholded singular value decomposition ( SVD) of the underlying data matrix with missing values. The SVD of matrices is performed based on a low-rank block TT decomposition for large scale data matrices with a low-rank tensor structure. Experimental results on simulated data demonstrate that the proposed method can estimate a large amount of missing values accurately compared to a matrix-based standard method.
引用
收藏
页码:1338 / 1343
页数:6
相关论文
共 50 条
  • [1] Block tensor train decomposition for missing data estimation
    Namgil Lee
    Jong-Min Kim
    [J]. Statistical Papers, 2018, 59 : 1283 - 1305
  • [2] Block tensor train decomposition for missing data estimation
    Lee, Namgil
    Kim, Jong-Min
    [J]. STATISTICAL PAPERS, 2018, 59 (04) : 1283 - 1305
  • [3] A Randomized Tensor Train Singular Value Decomposition
    Huber, Benjamin
    Schneider, Reinhold
    Wolf, Sebastian
    [J]. COMPRESSED SENSING AND ITS APPLICATIONS, 2017, : 261 - 290
  • [4] A Bayesian Singular Value Decomposition Procedure for Missing Data Imputation
    Zhai, Ruoshui
    Gutman, Roee
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (02) : 470 - 482
  • [5] Missing value imputation in a data matrix using the regularised singular value decomposition
    Arciniegas-Alarcon, Sergio
    Garcia-Pena, Marisol
    Krzanowski, Wojtek J.
    Rengifo, Camilo
    [J]. METHODSX, 2023, 11
  • [6] Completion of High Order Tensor Data with Missing Entries via Tensor-Train Decomposition
    Yuan, Longhao
    Zhao, Qibin
    Cao, Jianting
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 222 - 229
  • [7] Missing data detection and imputation for urban ANPR system using an iterative tensor decomposition approach
    Zhang, Han
    Chen, Peng
    Zheng, Jianfeng
    Zhu, Jingqing
    Yu, Guizhen
    Wang, Yunpeng
    Liu, Henry X.
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 107 : 337 - 355
  • [8] Probabilistic Tensor Train Decomposition
    Hinrich, Jesper L.
    Morup, Morten
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [9] TENSOR-TRAIN DECOMPOSITION
    Oseledets, I. V.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 2295 - 2317
  • [10] Tensor Decomposition with Missing Indices
    Yamaguchi, Yuto
    Hayashi, Kohei
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3217 - 3223