Probabilistic Tensor Train Decomposition

被引:4
|
作者
Hinrich, Jesper L. [1 ]
Morup, Morten [1 ]
机构
[1] Tech Univ Denmark, Dept Appl Math & Comp Sci, Lyngby, Denmark
关键词
Bayesian inference; tensor train decomposition; matrix product state; multi-modal data;
D O I
10.23919/eusipco.2019.8903177
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The tensor train decomposition (TTD) has become an attractive decomposition approach due to its ease of inference by use of the singular value decomposition and flexible yet compact representations enabling efficient computations and reduced memory usage using the TTD representation for further analyses. Unfortunately, the level of complexity to use and the order in which modes should be decomposed using the TTD is unclear. We advance TTD to a fully probabilistic TTD (PTTD) using variational Bayesian inference to account for parameter uncertainty and noise. In particular, we exploit that the PTTD enables model comparisons by use of the evidence lower bound (ELBO) of the variational approximation. On synthetic data with ground truth structure and a real 3-way fluorescence spectroscopy dataset, we demonstrate how the ELBO admits quantification of model specification not only in terms of numbers of components for each factor in the TTD, but also a suitable order of the modes in which the TTD should be employed. The proposed PTTD provides a principled framework for the characterization of model uncertainty, complexity, and model and mode-order when compressing tensor data using the TTD.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] PROBABILISTIC TENSOR TRAIN DECOMPOSITION WITH AUTOMATIC RANK DETERMINATION FROM NOISY DATA
    Xu, Le
    Cheng, Lei
    Wong, Ngai
    Wu, Yik-Chung
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 461 - 465
  • [2] TENSOR-TRAIN DECOMPOSITION
    Oseledets, I. V.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 2295 - 2317
  • [3] The probabilistic tensor decomposition toolbox
    Hinrich, Jesper L.
    Madsen, Kristoffer H.
    Morup, Morten
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (02):
  • [4] Probabilistic Streaming Tensor Decomposition
    Du, Yishuai
    Zheng, Yimin
    Lee, Kuang-Chih
    Zhe, Shandian
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 99 - 108
  • [5] Probabilistic Boolean Tensor Decomposition
    Rukat, Tammo
    Holmes, Chris C.
    Yau, Christopher
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [6] SPECTRAL TENSOR-TRAIN DECOMPOSITION
    Bigoni, Daniele
    Engsig-Karup, Allan P.
    Marzouk, Youssef M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : A2405 - A2439
  • [7] GRAPH REGULARIZED TENSOR TRAIN DECOMPOSITION
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3912 - 3916
  • [8] AN INCREMENTAL TENSOR TRAIN DECOMPOSITION ALGORITHM
    Aksoy, Doruk
    Gorsich, David J.
    Veerapaneni, Shravan
    Gorodetsky, Alex A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (02): : A1047 - A1075
  • [9] GTT: Guiding the Tensor Train Decomposition
    Li, Mao-Lin
    Candan, K. Selcuk
    Sapino, Maria Luisa
    SIMILARITY SEARCH AND APPLICATIONS, SISAP 2020, 2020, 12440 : 187 - 202
  • [10] Undirected Probabilistic Model for Tensor Decomposition
    Tao, Zerui
    Tanaka, Toshihisa
    Zhao, Qibin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,