Generalized inverses of a normal matrix

被引:6
|
作者
Zheng, Bing [1 ]
Ye, Lijuan [1 ]
Cvetkovic-Ilic, Dragana S. [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Univ Nis, Fac Sci, Dept Math, Nish, Serbia
关键词
Schur decomposition; Normal matrix; {i; j; k}-Generalized inverses; Drain inverse; Group inverse;
D O I
10.1016/j.amc.2008.09.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The expressions for generalized inverses of a normal matrix are discussed by its Schur decomposition. Crown Copyright (c) 2008 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:788 / 795
页数:8
相关论文
共 50 条
  • [31] Conditions for Existence, Representations, and Computation of Matrix Generalized Inverses
    Stanimirovic, Predrag S.
    Ciric, Miroslav
    Stojanovic, Igor
    Gerontitis, Dimitrios
    COMPLEXITY, 2017,
  • [32] Generalized Inverses of the Vandermonde Matrix: Applications in Control Theory
    Pantelous, Athanasios A.
    Karageorgos, Athanasios D.
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2013, 11 (05) : 1063 - 1070
  • [33] Inequalities for ranks of matrix expressions involving generalized inverses
    Xiong, Zhiping
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [34] RECONSTRUCTION OF SPECT IMAGES USING GENERALIZED MATRIX INVERSES
    SMITH, MF
    FLOYD, CE
    JASZCZAK, RJ
    COLEMAN, RE
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) : 165 - 175
  • [35] Computation of all generalized inverses of an intuitionistic fuzzy matrix
    Li, Qing
    Wang, Fanggui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (02) : 783 - 789
  • [36] GENERALIZED INVERSES OF A MATRIX ON AN ARBITRARY BODY - ANALYTICALLY OBSERVED
    GABRIEL, R
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1970, 244 : 83 - &
  • [37] Minimal ∞-norm of generalized inverses of the incidence matrix of a tree
    Chen, Sheng
    Dai, Yi
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (07): : 1224 - 1235
  • [38] Some generalized inverses of partition matrix and quotient identity of generalized Schur complement
    Sheng, Xingping
    Chen, Guoliang
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) : 174 - 184
  • [39] On Hermitian generalized inverses and positive semidefinite generalized inverses
    Xifu Liu
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 443 - 459
  • [40] ON HERMITIAN GENERALIZED INVERSES AND POSITIVE SEMIDEFINITE GENERALIZED INVERSES
    Liu, Xifu
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (04): : 443 - 459