Resistance of high-temperature cuprate superconductors

被引:4
|
作者
Tahir-Kheli, Jamil [1 ]
机构
[1] CALTECH, Dept Chem, Beckman Inst MC 139 74, Pasadena, CA 91125 USA
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
ELECTRONIC-STRUCTURE; ELECTRICAL-RESISTIVITY; BAND-GAPS; DEPENDENCE; SCATTERING; ENERGIES; SATURATION; GAUSSIAN-2; TRANSPORT; BEHAVIOR;
D O I
10.1088/1367-2630/15/7/073020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cuprate superconductors have many different atoms per unit cell. A large fraction of cells (5-25%) must be modified ('doped') before the material superconducts. Thus it is not surprising that there is little consensus on the superconducting mechanism, despite almost 200 000 papers (Mann 2011 Nature 475 280). Most astonishing is that for the simplest electrical property, the resistance, 'despite sustained theoretical efforts over the past two decades, its origin and its relation to the superconducting mechanism remain a profound, unsolved mystery' (Hussey et al 2011 Phil. Trans. R. Soc. A 369 1626). Currently, model parameters used to fit normal state properties are experiment specific and vary arbitrarily from one doping to the other. Here, we provide a quantitative explanation for the temperature and doping dependence of the resistivity in one self-consistent model by showing that cuprates are intrinsically inhomogeneous with a percolating metallic region and insulating regions. Using simple counting of dopant-induced plaquettes, we show that the superconducting pairing and resistivity are due to phonons.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] PEROVSKITE STACKING IN THE STRUCTURES OF THE HIGH-TEMPERATURE CUPRATE SUPERCONDUCTORS
    PARK, C
    SNYDER, RL
    APPLIED SUPERCONDUCTIVITY, 1995, 3 (1-3) : 73 - 83
  • [22] Infrared pseudogap in cuprate and pnictide high-temperature superconductors
    Moon, S. J.
    Lee, Y. S.
    Schafgans, A. A.
    Chubukov, A. V.
    Kasahara, S.
    Shibauchi, T.
    Terashima, T.
    Matsuda, Y.
    Tanatar, M. A.
    Prozorov, R.
    Thaler, A.
    Canfield, P. C.
    Bud'ko, S. L.
    Sefat, A. S.
    Mandrus, D.
    Segawa, K.
    Ando, Y.
    Basov, D. N.
    PHYSICAL REVIEW B, 2014, 90 (01):
  • [23] Unconventional isotope effects in the high-temperature cuprate superconductors
    Zhao, GM
    Keller, H
    Conder, K
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2001, 13 (29) : R569 - R587
  • [24] Possible vortex splitting in high-temperature cuprate superconductors
    Hlubina, Richard
    PHYSICAL REVIEW B, 2008, 77 (09):
  • [25] HIGH-TEMPERATURE BISMUTH CUPRATE SUPERCONDUCTORS SYNTHESIS AND CHARACTERIZATION
    MANSORI, M
    SATRE, P
    BREANDON, C
    ROUBIN, M
    SEBAOUN, A
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 1993, 18 (07): : 537 - 547
  • [26] RESISTANCE IN HIGH-TEMPERATURE SUPERCONDUCTORS
    BISHOP, DJ
    GAMMEL, PL
    HUSE, DA
    SCIENTIFIC AMERICAN, 1993, 268 (02) : 48 - 55
  • [27] Nonperturbative Calculations for Spectroscopic Properties of Cuprate High-Temperature Superconductors
    Sakai, Shiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (09)
  • [28] Calculation for polar Kerr effect in high-temperature cuprate superconductors
    Sharma, Girish
    Tewari, Sumanta
    Goswami, Pallab
    Yakovenko, Victor M.
    Chakravarty, Sudip
    PHYSICAL REVIEW B, 2016, 93 (07)
  • [29] Effects of oxygen-vacancies in high-temperature cuprate superconductors
    Matsunaka, D
    Rodulfo, ET
    Kasai, H
    SOLID STATE COMMUNICATIONS, 2005, 134 (05) : 355 - 360
  • [30] Pseudogaps, dopants, and strong disorder in cuprate high-temperature superconductors
    Phillips, JC
    Saxena, A
    Bishop, AR
    REPORTS ON PROGRESS IN PHYSICS, 2003, 66 (12) : 2111 - 2182