Effect of freeze-thaw cycling on fatigue behaviour in concrete

被引:8
|
作者
Boyd, Andrew J. [1 ]
Leone, Andrea [1 ]
机构
[1] McGill Univ, Dept Civil Engn, Montreal, PQ H3A 0C3, Canada
关键词
D O I
10.1088/1757-899X/652/1/012028
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Freeze-thaw damage is a deterioration mechanism caused when saturated concrete is exposed to temperature variations that cycle above and below its freezing point. The expansion of water in the concrete pore space due to freezing can lead to internal pressures that induce cracking, thus expediting the deterioration process through freeze-thaw cycles. The purpose of this investigation was is to evaluate the effect of freeze-thaw deterioration on the tensile fatigue life of air-entrained concrete at early stages of deterioration. Concrete cylinders were prepared with 0.45 and 0.65 water to cement ratios (W/C), then cured for 28 days before being subjected to the freeze-thaw cycling. After 0, 25 and 50 freeze-thaw cycles, the pressure tension (PT) test was used to induce tensile fatigue loading cycles until failure. The PT was capable of determining the decrease in fatigue life, represented as the number of cycles to failure, of the concretes when subjected to pure cyclical tensile loading after having first been exposed to freezing and thawing cycles. The results indicated that even though the ultimate static tensile strength of the specimens did not vary significantly due to the freeze-thaw cycles, the residual fatigue properties were degraded. UPV monitoring was able to determine the increase in internal damage, as the UPV of the specimens decreased with continued freeze-thaw cycling. It was shown that freeze-thaw deterioration reduces the ability of concrete to withstand cyclic loading, even at early stages prior to a decrease in static tensile strength.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Effect of freeze-thaw cycling on grain size of biochar
    Liu, Zuolin
    Dugan, Brandon
    Masiello, Caroline A.
    Wahab, Leila M.
    Gonnermann, Helge M.
    Nittrouer, Jeffrey A.
    PLOS ONE, 2018, 13 (01):
  • [12] Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete
    Sun, W
    Mu, R
    Lua, X
    Miao, CW
    CEMENT AND CONCRETE RESEARCH, 2002, 32 (12) : 1859 - 1864
  • [13] Fatigue test of reinforced concrete with the coupling of freeze-thaw and corrosion
    Lu, Mingshi
    Li, Xiaoming
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 114 - 114
  • [14] Water transport in concrete damaged by tensile loading and freeze-thaw cycling
    Yang, Zhifu
    Weiss, W. Jason
    Olek, Jan
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2006, 18 (03) : 424 - 434
  • [15] Durability of CFRP-concrete joints under freeze-thaw cycling
    Yun, Yanchun
    Wu, Yu-Fei
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2011, 65 (03) : 401 - 412
  • [16] Behaviour of Cement and Polymer Mortar Materials to Rapid Freeze-Thaw Cycling
    Ribeiro, M. C. S.
    Juvandes, L. F. P.
    Rodrigues, J. D.
    Ferreira, A. J. M.
    Marques, A. T.
    ADVANCED MATERIALS FORUM V, PT 1 AND 2, 2010, 636-637 : 1329 - +
  • [17] Effect of freeze-thaw damage on chloride ingress into concrete
    Kessler, Sylvia
    Thiel, Charlotte
    Grosse, Christian U.
    Gehlen, Christoph
    MATERIALS AND STRUCTURES, 2017, 50 (02)
  • [18] The Effect of Freeze-Thaw Damage on Corrosion in Reinforced Concrete
    Lu, Xiao-Chun
    Guan, Bin
    Chen, Bo-Fu
    Zhang, Xin
    Xiong, Bo-bo
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [19] EFFECT OF DRYING ON THE FREEZE-THAW DURABILITY OF CONCRETE.
    Wong, A.Y.C.
    Anderson, C.L.
    Hilsdorf, H.K.
    Illinois, University, Engineering Experiment Station, Bulletin, 1972, (506):
  • [20] Effect of freeze-thaw on the concrete pore structure features
    Qu, Feng
    Niu, Ditao
    ADVANCES IN CIVIL ENGINEERING AND ARCHITECTURE INNOVATION, PTS 1-6, 2012, 368-373 : 361 - 364