ON RATIONALITY OF W-ALGEBRAS

被引:47
|
作者
Kac, Victor G. [1 ]
Wakimoto, Minoru [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1007/s00031-008-9028-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the problem of classification of triples (g, f, k), where g is a simple Lie algebra, f its nilpotent element and k epsilon C, for which the simple W-algebra W-k(g, f) is rational.
引用
下载
收藏
页码:671 / 713
页数:43
相关论文
共 50 条
  • [1] On Rationality of W-algebras
    Victor G. Kac
    Minoru Wakimoto
    Transformation Groups, 2008, 13 : 671 - 713
  • [2] Rationality, quasirationality and finite W-algebras
    Gaberdiel, MR
    Neitzke, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) : 305 - 331
  • [3] Rationality, Quasirationality and Finite W-Algebras
    Matthias R. Gaberdiel
    Andrew Neitzke
    Communications in Mathematical Physics, 2003, 238 : 305 - 331
  • [4] Rationality of W-algebras: principal nilpotent cases
    Arakawa, Tomoyuki
    ANNALS OF MATHEMATICS, 2015, 182 (02) : 565 - 604
  • [5] Rationality and fusion rules of exceptional W-algebras
    Arakawa, Tomoyuki
    van Ekeren, Jethro
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2023, 25 (07) : 1250 - 2813
  • [6] W-algebras
    ORaifeartaigh, L
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1997, 52 (1-2): : 79 - 85
  • [7] FINITE W-ALGEBRAS
    TJIN, T
    PHYSICS LETTERS B, 1992, 292 (1-2) : 60 - 66
  • [8] Yangians and W-algebras
    Briot, C
    Ragoucy, E
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 709 - 718
  • [9] Trialities of W-algebras
    Creutzig, Thomas
    Linshaw, Andrew R.
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (01) : 69 - 194
  • [10] Quiver W-algebras
    Taro Kimura
    Vasily Pestun
    Letters in Mathematical Physics, 2018, 108 : 1351 - 1381