On Minimizers of the Hamiltonian System u" = delW (u) and on the Existence of Heteroclinic, Homoclinic and Periodic Orbits

被引:0
|
作者
Antonopoulos, Panagiotis [1 ]
Smyrnelis, Panayotis [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Hamiltonian system; heteroclinic; homoclinic; periodic orbit; minimize; NONCONVEX VARIATIONAL-PROBLEMS; POTENTIALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of the paper, we establish two necessary conditions for the existence of bounded one-dimensional minimizers u: the potential W must have a global minimum supposed to be 0 without loss of generality, and W(u(x)) -> 0 as vertical bar x vertical bar -> infinity. Furthermore, non-constant minimizers connect at 00 two distinct components of the set {W = 0}. In the second part, we prove (when the previous assumptions are satisfied) the existence of nontrivial minimizers. We also show the existence of heteroclinic, homoclinic, and periodic orbits in analogy with the scalar case. Finally, we study the asymptotic convergence of these solutions.
引用
收藏
页码:1503 / 1524
页数:22
相关论文
共 50 条
  • [11] Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems
    Zhang, Xiang
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (09) : 1687 - 1704
  • [12] THE BIFURCATION OF HOMOCLINIC AND PERIODIC-ORBITS FROM 2 HETEROCLINIC ORBITS
    CHOW, SN
    DENG, B
    TERMAN, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) : 179 - 204
  • [13] Homoclinic orbits for an infinite dimensional Hamiltonian system with periodic potential
    Zhang J.
    Lv D.
    Tang Y.
    Journal of Applied Mathematics and Computing, 2014, 44 (1-2) : 133 - 146
  • [14] A maximum principle for the system Δu - delW(u)=0
    Antonopoulos, Panagiotis
    Smyrnelis, Panayotis
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (06) : 595 - 600
  • [15] Breakdown mechanisms of normally hyperbolic invariant manifolds in terms of unstable periodic orbits and homoclinic/heteroclinic orbits in Hamiltonian systems
    Teramoto, Hiroshi
    Toda, Mikito
    Komatsuzaki, Tamiki
    NONLINEARITY, 2015, 28 (08) : 2677 - 2698
  • [16] The Existence of Heteroclinic Orbits for a Class of the Second-Order Hamiltonian System
    Huang, Wen-nian
    Tang, X. H.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (01) : 9 - 20
  • [17] The Existence of Heteroclinic Orbits for a Class of the Second-Order Hamiltonian System
    Wen-nian Huang
    X. H. Tang
    Mediterranean Journal of Mathematics, 2015, 12 : 9 - 20
  • [18] Homoclinic orbits of a Hamiltonian system
    Ding, YH
    Willem, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (05): : 759 - 778
  • [19] Homoclinic orbits of a Hamiltonian system
    Y. Ding
    M. Willem
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1999, 50 : 759 - 778
  • [20] On homoclinic and heteroclinic orbits of Chen's system
    Li, Tiecheng
    Chen, Guoting
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10): : 3035 - 3041