A MULTIMODES MONTE CARLO FINITE ELEMENT METHOD FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

被引:11
|
作者
Feng, Xiaobing [1 ]
Lin, Junshan [2 ]
Lorton, Cody [3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[3] Univ West Florida, Dept Math & Stat, Pensacola, FL 32514 USA
基金
美国国家科学基金会;
关键词
random partial differential equations; multimodes expansion; LU decomposition; Monte Carlo method; finite element methods;
D O I
10.1615/Int.J.UncertaintyQuantification.2016016805
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper develops and analyzes an efficient numerical method for solving elliptic partial differential equations, where the diffusion coefficients are random perturbations of deterministic diffusion coefficients. The method is based upon a multimodes representation of the solution as a power series of the perturbation parameter, and the Monte Carlo technique for sampling the probability space. One key feature of the proposed method is that the governing equations for all the expanded mode functions share the same deterministic diffusion coefficient; thus an efficient direct solver by repeatedly using the LU decomposition of the discretized common deterministic diffusion operator can be employed for solving the finite element discretized linear systems. It is shown that the computational complexity of the algorithm is comparable to that of solving a few deterministic elliptic partial differential equations using the director solver. Error estimates are derived for the method, and numerical experiments are provided to test the efficiency of the algorithm and validate the theoretical results.
引用
收藏
页码:429 / 443
页数:15
相关论文
共 50 条
  • [1] QUASI-MONTE CARLO FINITE ELEMENT METHODS FOR A CLASS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) : 3351 - 3374
  • [2] On elliptic partial differential equations with random coefficients
    Mugler, Antje
    Starkloff, Hans-Jorg
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 473 - 487
  • [3] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    [J]. NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [4] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    [J]. Numerische Mathematik, 2015, 131 : 329 - 368
  • [6] AN EFFICIENT MULTIMODES MONTE CARLO HOMOGENIZATION METHOD FOR RANDOM MATERIALS
    Yang, Zihao
    Huang, Jizu
    Feng, Xiaobing
    Guan, Xiaofei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1752 - A1774
  • [7] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Andrea Barth
    Christoph Schwab
    Nathaniel Zollinger
    [J]. Numerische Mathematik, 2011, 119 : 123 - 161
  • [8] FINITE ELEMENT METHOD FOR ELLIPTIC EQUATIONS WITH DISCONTINUOUS COEFFICIENTS
    BABUSKA, I
    [J]. COMPUTING, 1970, 5 (03) : 207 - &
  • [9] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Barth, Andrea
    Schwab, Christoph
    Zollinger, Nathaniel
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 123 - 161
  • [10] A FINITE ELEMENT METHOD FOR DIRICHLET BOUNDARY CONTROL OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS
    Du, Shaohong
    Cai, Zhiqiang
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (04) : 1081 - 1102