Slope modulation of waves governed by sine-Gordon equation

被引:9
|
作者
Le, Khanh Chau [1 ]
Lu Trong Khiem Nguyen [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Mech Mat Theorie, D-44780 Bochum, Germany
关键词
Nonlinear wave; Soliton; Slope modulation; Variational-asymptotic method;
D O I
10.1016/j.cnsns.2012.11.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the variational-asymptotic method we develop the theory of slope modulation of wave packet governed by sine-Gordon equation. A class of asymptotic solutions to the equation of slope modulation is found in terms of the density of solitons. The comparison with the exact n-soliton solution of sine-Gordon equation shows quite excellent agreement. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1563 / 1567
页数:5
相关论文
共 50 条
  • [31] Weingarten surfaces and sine-Gordon equation
    陈维桓
    李海中
    ScienceinChina,SerA., 1997, Ser.A.1997 (10) : 1028 - 1035
  • [32] Localization of the sine-Gordon equation solutions
    Porubov, A. V.
    Fradkov, A. L.
    Bondarenkov, R. S.
    Andrievsky, B. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 : 29 - 37
  • [33] RUNNING WAVES TYPE SOLUTIONS OF SINE-GORDON EQUATION AND PSEUDOSPHERICAL SURFACES
    ZADADAEV, SA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1994, (02): : 41 - 47
  • [34] Integrable discretizations of the sine-Gordon equation
    Boiti, M
    Pempinelli, F
    Prinari, B
    Spire, A
    INVERSE PROBLEMS, 2002, 18 (05) : 1309 - 1324
  • [35] CANONICAL TRANSFORMATION FOR SINE-GORDON EQUATION
    KODAMA, Y
    WADATI, M
    PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (01): : 342 - 343
  • [36] COMMENTS ON THE PERTURBED SINE-GORDON EQUATION
    PAPASTAMATIOU, NJ
    MATSUMOTO, H
    UMEZAWA, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (09) : 2205 - 2207
  • [37] On robust stability of sine-Gordon equation
    Efimov, Denis
    Fridman, Emilia
    Richard, Jean-Pierre
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7001 - 7006
  • [38] On the numerical solution of the Sine-Gordon equation
    Program in Applied Mathematics, University of Colorado, Boulder, CO 80309, United States
    不详
    不详
    J. Comput. Phys., 2 (354-367):
  • [39] SOLITARY WAVES IN A GENERALIZED TIME-DEPENDENT SINE-GORDON EQUATION
    RAY, JR
    LETTERE AL NUOVO CIMENTO, 1981, 30 (12): : 372 - 374
  • [40] Nonlinear waves of the sine-Gordon equation in the model with three attracting impurities
    Ekomasov, E. G.
    Samsonov, K. Yu
    Gumerov, A. M.
    Kudryavtsev, R., V
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2022, 30 (06): : 749 - 765