Si-SiC core-shell nanowires

被引:17
|
作者
Ollivier, M. [1 ,2 ]
Latu-Romain, L. [1 ]
Martin, M. [1 ]
David, S. [1 ]
Mantoux, A.
Bano, E. [2 ]
Souliere, V. [3 ]
Ferro, G. [3 ]
Baron, T. [1 ]
机构
[1] UJF Grenoble 1, Lab Technol Microelect, CNRS, CEA LTM, F-38054 Grenoble 9, France
[2] IMEP LAHC Grenoble INP, F-38016 Grenoble 1, France
[3] Univ Lyon 1, Lab Multimat & Inferfaces, F-69622 Villeurbanne, France
关键词
FIB/SEM; Chemical vapor deposition processes; Nanowire; Silicon carbide; Semiconducting silicon; Core-shell; SILICON NANOWIRES; BUFFER LAYERS; GROWTH; SEMICONDUCTOR; DIFFUSION; MECHANISM; QUALITY; SI(100); GAP;
D O I
10.1016/j.jcrysgro.2012.10.039
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The objective of this study is to grow Si-SiC core-shell nanowires (NWs) for bio-nano-sensors. The idea is to benefit from the electronic transport into the Si core NW and from the biocompatibility of the SiC shell all around the Si NW. Silicon nanowires (NWs) have been first obtained by a top-down approach. Before carburization, in situ deoxidation under H-2 allowed significant smoothening and faceting of the Si NWs sidewalls. Then, Si NWs have been carburized under methane or propane at atmospheric pressure and at temperatures >= 1000 degrees C. Carburization of Si NWs leads to Si-SiC core-shell NWs with a thin (similar to 3 nm), continuous and single crystalline cubic SiC shell. The 3C-SiC shell has been further thickened by chemical vapor deposition and preferential growth of 3C-SiC has been observed on the sidewalls of NWs. Based both on the electronic transport properties of silicon and on the biocompatibility of SiC, these new 1D-nanostructures could be an ideal object for nano-bio-sensors. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:158 / 163
页数:6
相关论文
共 50 条
  • [31] Defects Responsible for the Hole Gas in Ge/Si Core-Shell Nanowires
    Park, Ji-Sang
    Ryu, Byungki
    Moon, Chang-Youn
    Chang, K. J.
    [J]. NANO LETTERS, 2010, 10 (01) : 116 - 121
  • [32] Band Structure Calculations of Ge-Si Core-Shell Nanowires
    He, Yuhui
    Fan, Chun
    Zhao, Yu Ning
    Kang, Jinfeng
    Liu, Xiao Yan
    Han, Ruqi
    [J]. 2008 IEEE SILICON NANOELECTRONICS WORKSHOP, 2008, : 155 - +
  • [33] Significant Reduction of Thermal Conductivity in Si/Ge Core-Shell Nanowires
    Hu, Ming
    Giapis, Konstantinos P.
    Goicochea, Javier V.
    Zhang, Xiaoliang
    Poulikakos, Dimos
    [J]. NANO LETTERS, 2011, 11 (02) : 618 - 623
  • [34] Thermal and tensile properties of Si/Ge core-shell and superlattice nanowires
    Hai-jun Shen
    [J]. Frontiers of Materials Science in China, 2009, 3 : 415 - 420
  • [35] Thermal and tensile properties of Si/Ge core-shell and superlattice nanowires
    Shen, Hai-jun
    [J]. FRONTIERS OF MATERIALS SCIENCE, 2009, 3 (04) : 415 - 420
  • [36] Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires
    Yang, Kaike
    Cantarero, Andres
    Rubio, Angel
    D'Agosta, Roberto
    [J]. NANO RESEARCH, 2015, 8 (08) : 2611 - 2619
  • [37] Strain engineering of band offsets in Si/Ge core-shell nanowires
    Huang, Shouting
    Yang, Li
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (09)
  • [38] Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires
    Kaike Yang
    Andres Cantarero
    Angel Rubio
    Roberto D’Agosta
    [J]. Nano Research, 2015, 8 : 2611 - 2619
  • [39] SI-SIC PHOTOELECTRODE
    PONG, W
    HE, ZX
    ROOT, D
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (12) : 3143 - 3144
  • [40] Synthesis and Raman scattering of β-SiC/SiO2 core-shell nanowires
    Meng, Alan
    Li, Zhenjiang
    Zhang, Jinli
    Gao, Li
    Li, Hejun
    [J]. JOURNAL OF CRYSTAL GROWTH, 2007, 308 (02) : 263 - 268