Brieskorn manifolds, positive Sasakian geometry, and contact topology

被引:6
|
作者
Boyer, Charles P. [1 ]
Macarini, Leonardo [2 ]
van Koert, Otto [3 ,4 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Univ Fed Rio de Janeiro, Inst Matemat, Cidade Univ, BR-21941909 Rio De Janeiro, Brazil
[3] Seoul Natl Univ, Dept Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South Korea
[4] Seoul Natl Univ, Res Inst Math, Bldg 27,Room 402 ,San 56-1, Seoul 151747, South Korea
关键词
Brieskorn manifolds; equivariant symplectic homology; positive Sasakian structure; mean Euler characteristic; Sasaki-Einstein metric; EINSTEIN-METRICS; RICCI CURVATURE; SPHERES; HOMOLOGY; 5-MANIFOLDS;
D O I
10.1515/forum-2015-0142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using S-1 -equivariant symplectic homology, in particular its mean Euler characteristic, of the natural filling of links of Brieskorn-Pham polynomials, we prove the existence of infinitely many inequivalent contact structures on various manifolds, including in dimension 5 the k-fold connected sums of S-2 x S-3 and certain rational homology spheres. We then apply our result to show that on these manifolds the moduli space of classes of positive Sasakian structures has infinitely many components. We also apply our results to give lower bounds on the number of components of the moduli space of Sasaki-Einstein metrics on certain homotopy spheres. Finally, a new family of Sasaki-Einstein metrics of real dimension 20 on S-5 is exhibited.
引用
收藏
页码:943 / 965
页数:23
相关论文
共 50 条
  • [31] Positive Sasakian Structures on 5-Manifolds
    Kollar, Janos
    RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 : 93 - 117
  • [32] On the geometry of Sasakian-Einstein 5-manifolds
    Charles P. Boyer
    Krzysztof Galicki
    Michael Nakamaye
    Mathematische Annalen, 2003, 325 : 485 - 524
  • [33] Spectral geometry of eta-Einstein Sasakian manifolds
    Park, JeongHyeong
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (11) : 2140 - 2146
  • [34] Geometry of Warped Product Pointwise Submanifolds of Sasakian Manifolds
    Alqahtani, Lamia Saeed
    Balkan, Yavuz Selim
    FILOMAT, 2020, 34 (07) : 2413 - 2424
  • [35] Geometry of Harmonic Nearly Trans-Sasakian Manifolds
    Rustanov, Aligadzhi R.
    AXIOMS, 2023, 12 (08)
  • [36] On the geometry of Sasakian-Einstein 5-manifolds
    Boyer, CP
    Galicki, K
    Nakamaye, M
    MATHEMATISCHE ANNALEN, 2003, 325 (03) : 485 - 524
  • [37] The topology of certain 3-Sasakian 7-manifolds
    Hepworth, Richard A.
    MATHEMATISCHE ANNALEN, 2007, 339 (04) : 733 - 755
  • [38] The topology of certain 3-Sasakian 7-manifolds
    Richard A. Hepworth
    Mathematische Annalen, 2007, 339 : 733 - 755
  • [39] GENERALIZED BRIESKORN MANIFOLDS
    RANDELL, RC
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (01) : 111 - 115
  • [40] Positive Sectional Curvature on 3-Sasakian Manifolds
    Owen Dearricott
    Annals of Global Analysis and Geometry, 2004, 25 : 59 - 72