Pectoral muscle segmentation in mammograms based on homogenous texture and intensity deviation

被引:39
|
作者
Li, Yanfeng [1 ]
Chen, Houjin [1 ]
Yang, Yongyi [2 ]
Yang, Na [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[2] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Homogeneous texture; Image segmentation; Intensity deviation; Kalman filter; Mammogram; Pectoral muscle; IDENTIFICATION;
D O I
10.1016/j.patcog.2012.09.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel method is proposed to segment the pectoral muscle in mammograms. First two anatomical features of the pectoral muscle, homogeneous texture and high intensity deviation are employed to identify the initial pectoral muscle edge. Then Kalman filter is used to refine the ragged initial edge. The proposed method is tested on Mammographic Image Analysis Society Mini-Mammographic (mini-MIAS) database and Digital Database for Screening Mammography (DDSM) database. The acceptable rate is 90.06% and 92% for the mini-MIAS database and the DDSM database, respectively. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:681 / 691
页数:11
相关论文
共 50 条
  • [41] Two graph theory based methods for identifying the pectoral muscle in mammograms
    Ma, Fei
    Bajger, Mariusz
    Slavotinek, John P.
    Bottema, Murk J.
    PATTERN RECOGNITION, 2007, 40 (09) : 2592 - 2602
  • [42] Shape-based Automatic Detection of Pectoral Muscle Boundary in Mammograms
    Chunxiao Chen
    Gao Liu
    Jing Wang
    Gail Sudlow
    Journal of Medical and Biological Engineering, 2015, 35 : 315 - 322
  • [43] A pectoral muscle segmentation algorithm for digital mammograms using Otsu thresholding and multiple regression analysis
    Liu, Chen-Chung
    Tsai, Chung-Yen
    Liu, Jui
    Yu, Chun-Yuan
    Yu, Shyr-Shen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (05) : 1100 - 1107
  • [44] PeMNet for Pectoral Muscle Segmentation
    Yu, Xiang
    Wang, Shui-Hua
    Gorriz, Juan Manuel
    Jiang, Xian-Wei
    Guttery, David S.
    Zhang, Yu-Dong
    BIOLOGY-BASEL, 2022, 11 (01):
  • [45] Pectoral muscle segmentation: A review
    Ganesan, Karthikeyan
    Acharya, U. Rajendra
    Chua, Kuang Chua
    Min, Lim Choo
    Abraham, K. Thomas
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 110 (01) : 48 - 57
  • [46] Pectoral muscle detection in mammograms based on the shortest path with endpoints learnt by SVMs
    Domingues, Ines
    Cardoso, Jaime S.
    Amaral, Igor
    Moreira, Ines
    Passarinho, Pedro
    Comba, Joao Santa
    Correia, Ricardo
    Cardoso, Maria J.
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 3158 - 3161
  • [47] Automatic extraction of pectoral muscle in the MLO view of mammograms
    Feudjio, C. K.
    Klein, J.
    Tiedeu, A.
    Colot, O.
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (23): : 8493 - 8515
  • [48] Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network
    Rampun, Andrik
    Lopez-Linares, Karen
    Morrow, Philip J.
    Scotney, Bryan W.
    Wang, Hui
    Garcia Ocana, Inmaculada
    Maclair, Gregory
    Zwiggelaar, Reyer
    Gonzalez Ballester, Miguel A.
    Macia, Ivan
    MEDICAL IMAGE ANALYSIS, 2019, 57 : 1 - 17
  • [49] Accurate Segmentation of the Breast Region in Mammograms Based On Pixel Intensity
    Kus, Pelin
    Karagoz, Irfan
    2009 IEEE 17TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, VOLS 1 AND 2, 2009, : 198 - 201
  • [50] Segmentation of mammograms into distinct morphological texture regions
    Baeg, S
    Popov, AT
    Kamat, VG
    Batman, S
    Sivakumar, K
    Kehtarnavaz, N
    Dougherty, ER
    Shah, RB
    11TH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 1998, : 20 - 25