Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network

被引:40
|
作者
Hong, Ying-Yi [1 ]
Wu, Ching-Ping [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Elect Engn, Chungli 32023, Taiwan
关键词
locational marginal price; forecasting; principal component analysis; MARKETS; MODEL;
D O I
10.3390/en5114711
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Bidding competition is one of the main transaction approaches in a deregulated electricity market. Locational marginal prices (LMPs) resulting from bidding competition and system operation conditions indicate electricity values at a node or in an area. The LMP reveals important information for market participants in developing their bidding strategies. Moreover, LMP is also a vital indicator for the Security Coordinator to perform market redispatch for congestion management. This paper presents a method using a principal component analysis (PCA) network cascaded with a multi-layer feedforward (MLF) network for forecasting LMPs in a day-ahead market. The PCA network extracts essential features from periodic information in the market. These features serve as inputs to the MLF network for forecasting LMPs. The historical LMPs in the PJM market are employed to test the proposed method. It is found that the proposed method is capable of forecasting day-ahead LMP values efficiently.
引用
收藏
页码:4711 / 4725
页数:15
相关论文
共 50 条
  • [41] Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
    Conejo, AJ
    Plazas, MA
    Espínola, R
    Molina, AB
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) : 1035 - 1042
  • [42] Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market
    Monteiro, Claudio
    Fernandez-Jimenez, L. Alfredo
    Ramirez-Rosado, Ignacio J.
    ENERGIES, 2015, 8 (09) : 10464 - 10486
  • [43] Day-ahead deregulated electricity market price forecasting using neural network input featured by DCT
    Anbazhagan, S.
    Kumarappan, N.
    ENERGY CONVERSION AND MANAGEMENT, 2014, 78 : 711 - 719
  • [44] Day-ahead electricity market price forecasting using artificial neural network with spearman data correlation
    Nascimento, Joao
    Pinto, Tiago
    Vale, Zita
    2019 IEEE MILAN POWERTECH, 2019,
  • [45] Day-Ahead Electricity Market Forecasting using Kernels
    Kekatos, Vassilis
    Veeramachaneni, Sriharsha
    Light, Marc
    Giannakis, Georgios B.
    2013 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES (ISGT), 2013,
  • [46] In Day-Ahead Electricity Load Forecasting
    Klempka, Ryszard
    Swiatek, Boguslaw
    2009 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL POWER QUALITY AND UTILISATION (EPQU 2009), 2009, : 313 - 317
  • [47] An integrated machine learning model for day-ahead electricity price forecasting
    Fan, Shu
    Liao, James R.
    Kaneko, Kazuhiro
    Chen, Luonan
    2006 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION. VOLS 1-5, 2006, : 1643 - +
  • [48] Simultaneous day-ahead forecasting of electricity price and load in smart grids
    Shayeghi, H.
    Ghasemi, A.
    Moradzadeh, M.
    Nooshyar, M.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 95 : 371 - 384
  • [49] A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets
    Gollou, Abbas Rahimi
    Ghadimi, Noradin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (06) : 4031 - 4045
  • [50] The Day-Ahead Electricity Price Forecasting Based on Stacked CNN and LSTM
    Xie, Xiaolong
    Xu, Wei
    Tan, Hongzhi
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 216 - 230