Rational solutions for a (2+1)-dimensional nonlinear model in water waves generated by the Jaulent-Miodek hierarchy

被引:2
|
作者
Yang, Jin-Wei
Gao, Yi-Tian [1 ]
Su, Chuan-Qi
Zhao, Chen
Feng, Yu-Jie
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear water waves; Nonlinear evolution equation; Jaulent-Miodek hierarchy; Rational solutions; Hirota's bilinear method; Pfaffian; BILINEAR BACKLUND-TRANSFORMATIONS; N-SOLITON SOLUTION; SCHRODINGER-EQUATION; EVOLUTION EQUATION; ROGUE WAVES; COLLISIONS; DYNAMICS;
D O I
10.1016/j.camwa.2016.08.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a (2+1)-dimensional nonlinear evolution equation (NLEE) generated by the Jaulent-Miodek hierarchy for nonlinear water waves via the Hirota's bilinear method and Pfaffian. First, we construct rational solutions for general bilinear equations, and then convert the target bilinear equations to the general ones to obtain their rational solutions. The Pfaffian plays a role to simplifying the computations compared with the determinant way in the existing literatures. Once the first-and second-order rational solutions have been obtained, the higher-order solutions can be derived by the same token. Figures for the first-and second-order rational solutions are plotted and analyzed. As an application, the rational solutions for the modified Kadomtsev-Petviashvili equation have also been constructed. The method might be used for some other NLEEs to construct their rational solutions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2685 / 2693
页数:9
相关论文
共 50 条
  • [21] Further Results about Seeking for the Exact Solutions of the Nonlinear (2+1-Dimensional Jaulent-Miodek Equation
    Hu, Jingsen
    Qi, Jianming
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [22] (2+1)维Jaulent-Miodek方程的扭结孤子解
    韦方棋
    朱世辉
    王小娇
    西华师范大学学报(自然科学版), 2017, 38 (04) : 392 - 397
  • [23] Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent-Miodek Evolution Equation Using the Reliable Methods
    Kaewta, Supaporn
    Sirisubtawee, Sekson
    Khansai, Nattawut
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2020, 2020
  • [24] Soliton solutions of the (2 + 1)-dimensional Jaulent-Miodek evolution equation via effective analytical techniques
    Muhammad Zubair Raza
    Muhammad Abdaal Bin Iqbal
    Aziz Khan
    D. K. Almutairi
    Thabet Abdeljawad
    Scientific Reports, 15 (1)
  • [25] Soliton solutions and Bäcklund transformations of a (2 + 1)-dimensional nonlinear evolution equation via the Jaulent–Miodek hierarchy
    De-Yin Liu
    Bo Tian
    Yan Jiang
    Wen-Rong Sun
    Nonlinear Dynamics, 2014, 78 : 2341 - 2347
  • [26] On the exact solutions and conservation laws of a generalized (1+2)-dimensional Jaulent-Miodek equation with a power law nonlinearity
    Mbusi, S. O.
    Muatjetjeja, B.
    Adem, A. R.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 1721 - 1735
  • [27] Kink Soliton Dynamic of the (2+1)-Dimensional Integro-Differential Jaulent-Miodek Equation via a Couple of Integration Techniques
    Cakicioglu, Hasan
    Ozisik, Muslum
    Secer, Aydin
    Bayram, Mustafa
    SYMMETRY-BASEL, 2023, 15 (05):
  • [28] The first integral method to study the (2+1)-dimensional Jaulent–Miodek equations
    M MATINFAR
    M ESLAMI
    S ROSHANDEL
    Pramana, 2015, 85 : 593 - 603
  • [29] 扩展的(2+1)维Jaulent-Miodek方程的显式解和守恒律
    李玉
    刘希强
    辛祥鹏
    河北师范大学学报(自然科学版), 2016, 40 (05) : 376 - 384
  • [30] Rational and semi-rational solutions of a nonlocal (2+1)-dimensional nonlinear Schrodinger equation
    Peng, Wei-Qi
    Tian, Shou-Fu
    Zhang, Tian-Tian
    Fang, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6865 - 6877