Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces

被引:31
|
作者
Solanes, G [1 ]
机构
[1] Univ Stuttgart, Inst Geometrie & Topol, D-70569 Stuttgart, Germany
关键词
integral geometry; total curvature;
D O I
10.1090/S0002-9947-05-03828-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an integral-geometric proof of the Gauss-Bonnet theorem for hypersurfaces in constant curvature spaces. As a tool, we obtain variation formulas in integral geometry with interest in its own.
引用
下载
收藏
页码:1105 / 1115
页数:11
相关论文
共 50 条
  • [1] Gauss-Bonnet formulae and rotational integrals in constant curvature spaces
    Barahona, S.
    Gual-Arnau, X.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 50 : 116 - 125
  • [2] A remark on the Gauss-Bonnet theorem in Finsler geometry
    Bidabad, Behroz
    BSG PROCEEDINGS 16, 2009, 16 : 42 - 46
  • [3] A note on the Gauss-Bonnet theorem for Finsler spaces
    Bao, D
    Chern, SS
    ANNALS OF MATHEMATICS, 1996, 143 (02) : 233 - 252
  • [4] ON GAUSS-BONNET THEOREM
    Jaric, Jovo
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2012, 91 (105): : 59 - 62
  • [5] THE GAUSS-BONNET THEOREM
    Raghunathan, M. S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2015, 46 (06): : 893 - 900
  • [6] The Gauss-Bonnet theorem
    M. S. Raghunathan
    Indian Journal of Pure and Applied Mathematics, 2015, 46 : 893 - 900
  • [7] INTEGRAL FORMULA OF GAUSS-BONNET
    MIRON, R
    TENSOR, 1972, 26 : 1 - 4
  • [8] THE GAUSS-BONNET THEOREM FOR CONE MANIFOLDS AND VOLUMES OF MODULI SPACES
    McMullen, Curtis T.
    AMERICAN JOURNAL OF MATHEMATICS, 2017, 139 (01) : 261 - 291
  • [9] Energy integral in fracture mechanics (J-integral) and Gauss-Bonnet Theorem
    Yamasaki, Kazuhito
    Nagahama, Hiroyuki
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (06): : 515 - 520
  • [10] Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group
    Balogh, Zoltan M.
    Tyson, Jeremy T.
    Vecchi, Eugenio
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 1 - 38