Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors

被引:489
|
作者
Chen, Yen-Chia [1 ]
de Oteyza, Dimas G. [1 ,3 ]
Pedramrazi, Zahra [1 ]
Chen, Chen [4 ]
Fischer, Felix R. [2 ,4 ]
Crommie, Michael F. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Ctr Fis Mat CSIC UPV EHU Mat Phys Ctr, E-20018 San Sebastian, Spain
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
graphene nanoribbon; scanning tunneling microscopy and spectroscopy; molecular precursors; bottom-up synthesis; energy gaps; EDGE STATES; GROWTH;
D O I
10.1021/nn401948e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A prerequisite for future graphene nanoribbon (GNR) applications is the ability to fine-tune the electronic band gap of GNRs. Such control requires the development of fabrication tools capable of precisely controlling width and edge geometry of GNRs at the atomic scale. Here we report a technique for modifying GNR band gaps via covalent self-assembly of a new species of molecular precursors that yields n = 13 armchair GNRs, a wider GNR than those previously synthesized using bottom-up molecular techniques. Scanning tunneling microscopy and spectroscopy reveal that these n = 13 armchair GNRs have a band gap of 1.4 eV, 1.2 eV smaller than the gap determined previously for n = 7 armchair GNRs. Furthermore, we observe a localized electronic state near the end of n = 13 armchair GNRs that is associated with hydrogen-terminated sp(2)-hybridized carbon atoms at the zigzag termini.
引用
收藏
页码:6123 / 6128
页数:6
相关论文
共 50 条
  • [31] Band Gap Engineering via Edge-Functionalization of Graphene Nanoribbons
    Wagner, Philipp
    Ewels, Christopher P.
    Adjizian, Jean-Joseph
    Magaud, Laurence
    Pochet, Pascal
    Roche, Stephan
    Lopez-Bezanilla, Alejandro
    Ivanovskaya, Viktoria V.
    Yaya, Abu
    Rayson, Mark
    Briddon, Patrick
    Humbert, Bernard
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (50): : 26790 - 26796
  • [32] Insulator band gap in single-side-hydrogenated graphene nanoribbons
    L. A. Openov
    A. I. Podlivaev
    Semiconductors, 2012, 46 : 199 - 202
  • [33] Strain modulated band gap of edge passivated armchair graphene nanoribbons
    Peng, Xihong
    Velasquez, Selina
    APPLIED PHYSICS LETTERS, 2011, 98 (02)
  • [34] Toward Cove-Edged Low Band Gap Graphene Nanoribbons
    Liu, Junzhi
    Li, Bo-Wei
    Tan, Yuan-Zhi
    Giannakopoulos, Angelos
    Sanchez-Sanchez, Carlos
    Beljonne, David
    Ruffieux, Pascal
    Fasel, Roman
    Feng, Xinliang
    Muellen, Klaus
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (18) : 6097 - 6103
  • [35] Band gap tuning of armchair silicene nanoribbons using periodic hexagonal holes
    Aghaei, Sadegh Mehdi
    Calizo, Irene
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (10)
  • [36] Coulomb gap in graphene nanoribbons
    Droescher, S.
    Knowles, H.
    Meir, Y.
    Ensslin, K.
    Ihn, T.
    PHYSICAL REVIEW B, 2011, 84 (07):
  • [37] Facile band gap tuning in graphene-brucite heterojunctions
    Ulian, Gianfranco
    Valdre, Giovanni
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [38] Band-gap tuning of monolayer graphene by oxygen adsorption
    Takahashi, Toru
    Sugawara, Katsuaki
    Noguchi, Eiichi
    Sato, Takafumi
    Takahashi, Takashi
    CARBON, 2014, 73 : 141 - 145
  • [39] Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons
    Lin, Ming-Wei
    Ling, Cheng
    Agapito, Luis A.
    Kioussis, Nicholas
    Zhang, Yiyang
    Cheng, Mark Ming-Cheng
    Wang, Wei L.
    Kaxiras, Efthimios
    Zhou, Zhixian
    PHYSICAL REVIEW B, 2011, 84 (12)
  • [40] Band gap engineering of graphene/h-BN hybrid superlattices nanoribbons
    Li, Shilong
    Ren, Zhaoyu
    Zheng, Jiming
    Zhou, Yixuan
    Wan, Yun
    Hao, Ling
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (03)