Measuring the Sampling Robustness of Complex Networks

被引:1
|
作者
Areekijseree, Katchaguy [1 ]
Soundarajan, Sucheta [1 ]
机构
[1] Syracuse Univ, Syracuse, NY 13244 USA
关键词
D O I
10.1145/3341161.3342873
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
When studying a network, it is often of interest to understand the robustness of that network to noise. Network robustness has been studied in a variety of contexts, examining network properties such as the number of connected components and the lengths of shortest paths. In this work, we present a new network robustness measure, which we refer to as 'sampling robustness'. The goal of the sampling robustness measure is to quantify the extent to which a network sample collected from a graph with errors is a good representation of a network sample collected from that same graph, but without errors. These errors may be introduced by humans or by the system (e.g., mistakes from the respondents or a bug in an API program), and may affect the performance of a data collection algorithm and the quality of the obtained sample. Thus, when data analysts analyze the sampled network, they may wish to know whether such errors will affect future analysis results. We demonstrate that sampling robustness is dependent on a few, easily-computed properties of the network: the leading eigenvalue, average node degree and clustering coefficient. In addition, we introduce regression models for estimating sampling robustness given an obtained sample. As a result, our models can estimate the sampling robustness with MSE < 0.0015 and the model has an R-squared of up to 75%.
引用
收藏
页码:294 / 301
页数:8
相关论文
共 50 条
  • [31] Subgraph Robustness of Complex Networks Under Attacks
    Shang, Yilun
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (04): : 821 - 832
  • [32] Recent Progress in Controllability Robustness of Complex Networks
    Lou Y.
    Li J.-L.
    Li S.
    Deng H.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (10): : 2374 - 2391
  • [33] Important Node Identification and Robustness of Complex Networks
    Wang, Sichen
    Qian, Xiaodong
    [J]. PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1666 - 1671
  • [34] A Genetic Algorithm for Improving Robustness of Complex Networks
    Pizzuti, Clara
    Socievole, Annalisa
    [J]. 2018 IEEE 30TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2018, : 514 - 521
  • [35] ON THE INFLUENCE OF TOPOLOGICAL CHARACTERISTICS ON ROBUSTNESS OF COMPLEX NETWORKS
    Kasthurirathna, Dharshana
    Piraveenan, Mahendra
    Thedchanamoorthy, Gnanakumar
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2013, 3 (02) : 89 - 100
  • [36] Robustness of Complex Networks with Implications for Consensus and Contagion
    Zhang, Haotian
    Sundaram, Shreyas
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 3426 - 3432
  • [37] Spectral Measure of Structural Robustness in Complex Networks
    Wu, Jun
    Barahona, Mauricio
    Tan, Yue-Jin
    Deng, Hong-Zhong
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2011, 41 (06): : 1244 - 1252
  • [38] Game between Robustness and Cost in Complex Networks
    Chen, Lei
    Yue, Dong
    Dou, Chunxia
    Cheng, Zihao
    [J]. PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 203 - 206
  • [39] A quantitative method for determining the robustness of complex networks
    Qin, Jun
    Wu, Hongrun
    Tong, Xiaonian
    Zheng, Bojin
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2013, 253 : 85 - 90
  • [40] On the robustness of complex networks by using the algebraic connectivity
    Jamakovic, A.
    Van Mieghem, P.
    [J]. NETWORKING 2008: AD HOC AND SENSOR NETWORKS, WIRELESS NETWORKS, NEXT GENERATION INTERNET, PROCEEDINGS, 2008, 4982 : 183 - 194