Admissible deformation fields for the homogenization of elastoplastic materials with generalized periodicity

被引:0
|
作者
Tsalis, Dimitrios [1 ]
Chatzigeorgiou, George [2 ]
Charalambakis, Nicolas [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Civil Engn, GR-54124 Thessaloniki, Greece
[2] Univ Erlangen Nurnberg, Chair Appl Mech, D-91058 Erlangen, Germany
关键词
Non-linear homogenization; Micro-mechanics; Elastoplasticity; COMPOSITES;
D O I
10.1016/j.mechrescom.2013.08.002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we present the admissible deformation fields and the corresponding functional setting needed for the homogenization of the non-linear equations describing the elastoplastic behavior of structures with generalized periodicity. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:43 / 46
页数:4
相关论文
共 50 条
  • [31] Generalized homogenization model of piezoelectric materials for ultrasonic transducer applications
    Wampo, Fidele Leopold Hanse
    Ntenga, Richard
    Effa, Joseph Yves
    Lapusta, Yuri
    Ntamack, Guy Edgar
    Marechal, Pierre
    JOURNAL OF COMPOSITE MATERIALS, 2022, 56 (05) : 713 - 726
  • [32] Frontiers in homogenization methods towards generalized continua for architected materials
    Ganghoffer, Jean-Francois
    Wazne, Abdallah
    Reda, Hilal
    MECHANICS RESEARCH COMMUNICATIONS, 2023, 130
  • [33] An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials
    Gao, Ming
    Tampubolon, Andre Pradhana
    Jiang, Chenfanfu
    Sifakis, Eftychios
    ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06):
  • [34] THE GENERALIZED INCLUSION PROBLEM, WITH APPLICATION TO SOME ELASTOPLASTIC PROBLEMS FOR HETEROGENEOUS MATERIALS
    BERVEILLER, M
    ZAOUI, A
    JOURNAL DE MECANIQUE, 1980, 19 (02): : 343 - 361
  • [35] Deep homogenization networks for elastic heterogeneous materials with two- and three-dimensional periodicity
    Wu, Jiajun
    Jiang, Jindong
    Chen, Qiang
    Chatzigeorgiou, George
    Meraghni, Fodil
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 284
  • [36] The formulation of homogenization method applied to large deformation problem for composite materials
    Takano, N
    Ohnishi, Y
    Zako, M
    Nishiyabu, K
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (44) : 6517 - 6535
  • [37] Mathematical simulation of elastoplastic deformation in cubic materials with an account of anisotropic bulk compressibility
    Krivosheina, M. N.
    Tuch, E., V
    MATHEMATICS AND MECHANICS OF SOLIDS, 2022, 27 (02) : 210 - 221
  • [38] Cyclic Elastoplastic Deformation and Durability of Materials Under Simple and Complex Loadings.
    Mozharovskii, N.S.
    Shukaev, S.N.
    Problemy Prochnosti, 1985, (10): : 49 - 55
  • [39] Homogenization of periodic materials with viscoelastic phases using the generalized FVDAM theory
    Cavalcante, Marcio A. A.
    Marques, Severino P. C.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 87 : 43 - 53
  • [40] GFFD: Generalized free-form deformation with scalar fields
    Qin Xu-jia
    Hua Wei
    Fang Xiang
    Bao Hu-jun
    Peng Qun-sheng
    Journal of Zhejiang University-SCIENCE A, 2003, 4 (6): : 623 - 629