Virial Theorem for a Class of Quantum Nonlinear Harmonic Oscillators

被引:2
|
作者
Wang Xue-Hong [1 ]
Guo Jun-Yi [1 ]
Li Yan [2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, Chern Inst Math, Div Theoret Phys, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
virial theorem; quantum nonlinear harmonic oscillators; Hellmann-Feynman theorem;
D O I
10.1088/0253-6102/58/4/04
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Virial Theorem based on a class of quantum nonlinear harmonic oscillators is presented. This relationship has to do with parameter A and partial derivative/partial derivative lambda, where the lambda is a real number. When lambda = 0, the nonlinear harmonic oscillator naturally reduces to the usual quantum linear harmonic oscillator, and the Virial Theorem also reduces to the usual Virial Theorem.
引用
收藏
页码:480 / 482
页数:3
相关论文
共 50 条
  • [21] Violation of the virial theorem and generalized equipartition theorem for logarithmic oscillators serving as a thermostat
    Kai Chen
    Dahai He
    Hong Zhao
    Scientific Reports, 7
  • [22] Quantum harmonic oscillators with nonlinear effective masses in the weak density approximation
    Chang, Jen-Hsu
    Lin, Chun-Yan
    Lee, Ray-Kuang
    PHYSICA SCRIPTA, 2022, 97 (02)
  • [23] Analysis of coupled quantum parametric harmonic oscillators by classical nonlinear modeling
    Matsuura, Keita
    Nakamura, Ibuki
    Fujisaka, Hisato
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2022, 13 (03): : 570 - 581
  • [24] On the spectra of a class of PT-symmetric quantum nonlinear oscillators
    Caliceti, E
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (09) : 1077 - 1080
  • [25] HARMONIC SYNCHRONIZATION OF NONLINEAR OSCILLATORS
    SCHMIDEG, I
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1971, 59 (08): : 1250 - &
  • [26] Harmonic Oscillators with Nonlinear Damping
    Sprott, J. C.
    Hoover, W. G.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (11):
  • [27] Quantum computation with harmonic oscillators
    Bartlett, SD
    Sanders, BC
    de Guise, H
    CLEO(R)/PACIFIC RIM 2001, VOL II, TECHNICAL DIGEST, 2001, : 404 - 405
  • [28] Quantum computation with harmonic oscillators
    Bartlett, SD
    Sanders, BC
    Varcoe, BTH
    De Guise, H
    EXPERIMENTAL IMPLEMENTATION OF QUANTUM COMPUTATION, 2001, : 344 - 347
  • [29] Nonadiabaticity of quantum harmonic oscillators
    Kim, Hyeong-Chan
    Lee, Youngone
    PHYSICS LETTERS A, 2022, 430
  • [30] Controllability of quantum harmonic oscillators
    Mirrahimi, M
    Rouchon, P
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 745 - 747