Stably stratified flows: A model with no Ri(cr)

被引:78
|
作者
Canuto, V. M. [1 ,2 ]
Cheng, Y. [3 ]
Howard, A. M. [4 ]
Esau, I. N. [5 ]
机构
[1] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA
[3] Columbia Univ, Ctr Climate Syst Res, New York, NY USA
[4] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA USA
[5] Bjerknes Ctr Climate Res, Nansen Environm & Remote Sensing Ctr, Bergen, Norway
关键词
D O I
10.1175/2007JAS2470.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A large set of laboratory, direct numerical simulation (DNS), and large eddy simulation (LES) data indicates that in stably stratified flows turbulent mixing exists up to Ri similar to O(100), meaning that there is practically no Ri(cr). On the other hand, traditional local second-order closure (SOC) models entail a critical Ri(cr) similar to O(1) above which turbulence ceases to exist and are therefore unable to explain the above data. The authors suggest how to modify the recent SOC model of Cheng et al. to reproduce the above data for arbitrary Ri.
引用
收藏
页码:2437 / 2447
页数:11
相关论文
共 50 条
  • [41] BAROCLINIC FLOWS IN STABLY STRATIFIED REGIONS OF EARTHS OUTER CORE
    CARRIGAN, CR
    BUSSE, FH
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1976, 57 (12): : 907 - 907
  • [42] Rapid vertical sampling in stably stratified turbulent shear flows
    Keller, KH
    Van Atta, CW
    [J]. DYNAMICS OF ATMOSPHERES AND OCEANS, 2000, 31 (1-4) : 23 - 45
  • [43] A balanced approach to modelling rotating stably stratified geophysical flows
    Dritschel, DG
    Viúdez, A
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 488 : 123 - 150
  • [44] Turbulence structure in stably stratified open-channel flows
    [J]. Nippon Kikai Gakkai Ronbunshu, B, 608 (1170-1176):
  • [45] On turbulent mixing in stably stratified wall-bounded flows
    Karimpour, Farid
    Venayagamoorthy, Subhas Karan
    [J]. PHYSICS OF FLUIDS, 2015, 27 (04)
  • [46] Large-scale anisotropy in stably stratified rotating flows
    Marino, R.
    Mininni, P. D.
    Rosenberg, D. L.
    Pouquet, A.
    [J]. PHYSICAL REVIEW E, 2014, 90 (02):
  • [47] ON THE BOUNDARY CONDITIONS IN THE NUMERICAL SIMULATION OF STABLY STRATIFIED FLUIDS FLOWS
    Bodnar, T.
    Fraunie, Ph.
    [J]. TOPICAL PROBLEMS OF FLUID MECHANICS 2017, 2017, : 45 - 52
  • [48] THEORETICAL MODELS OF STABLY STRATIFIED FLOWS AND CRITICAL RICHARDSON NUMBERS
    ARYA, SPS
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1970, 51 (11): : 759 - &
  • [49] An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified flows
    Lazeroms, W. M. J.
    Brethouwer, G.
    Wallin, S.
    Johansson, A. V.
    [J]. JOURNAL OF FLUID MECHANICS, 2013, 723 : 91 - 125
  • [50] A quasi-normal scale elimination model of turbulence and its application to stably stratified flows
    Sukoriansky, S.
    Galperin, B.
    Perov, V.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2006, 13 (01) : 9 - 22