A labeling scheme based on Markov Random Fields and Gaussian mixture models for hyperspectral images

被引:1
|
作者
Huang, Xiu-Qin [1 ]
Liao, Zhi-Wu [2 ]
机构
[1] Suzhou Nonferrous Metals Res Inst, Suzhou, Jiangsu, Peoples R China
[2] Sichuan Normal Univ, Sch Comp Sci, Chengdu, Peoples R China
关键词
hyperspectral image; Markov random field (MRF); non-Gaussian statistics; Gaussian mixture model (GMM); nonparametric kernel density estimation; labeling;
D O I
10.1109/ICMLC.2008.4621033
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A new method about surface feature labeling for hyperspectral images is presented in this paper in the framework of Bayesian labeling based on Markov Random Field (MRF). After the dimension of the hyperspectral image is reduced by PCA, a kernel density estimator and a Gaussian mixture model (GMM) are respectively used to capture the non-Gaussian statistics of the dimension-reduced images and their difference images. Further more, one of components of GMM is chosen to describe the energy of difference images to improve classification accuracy. A Markov random field-maximum a posteriori estimation problem is formulated and the final labels are obtained by the simulated annealing algorithm. Additionally, the labeling result based on GMM is compared with Generalized Laplacian (GL) model. Experimental results show that it is an efficient and robust algorithm for surface feature labeling.
引用
收藏
页码:3619 / +
页数:2
相关论文
共 50 条
  • [21] ON MARKOV MODELS OF RANDOM FIELDS
    江泽培
    [J]. Acta Mathematicae Applicatae Sinica, 1987, (04) : 328 - 341
  • [22] SUPERPIXEL-BASED MARKOV RANDOM FIELD FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Li, Shanshan
    Jia, Xiuping
    Zhang, Bing
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3491 - 3493
  • [23] Spatial-spectral classification of hyperspectral images: a deep learning framework with Markov Random fields based modelling
    Qing, Chunmei
    Ruan, Jiawei
    Xu, Xiangmin
    Ren, Jinchang
    Zabalza, Jaime
    [J]. IET IMAGE PROCESSING, 2019, 13 (02) : 235 - 245
  • [24] Approximating hidden Gaussian Markov random fields
    Rue, H
    Steinsland, I
    Erland, S
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 877 - 892
  • [25] MARKOV PROPERTY FOR GENERALIZED GAUSSIAN RANDOM FIELDS
    KALLIANPUR, G
    MANDREKA.V
    [J]. ANNALES DE L INSTITUT FOURIER, 1974, 24 (02) : 143 - 167
  • [26] INNOVATION PROBLEM FOR GAUSSIAN MARKOV RANDOM FIELDS
    DOBRUSHIN, RL
    SURGAILIS, D
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (03): : 275 - 291
  • [27] Nonstationary Spatial Gaussian Markov Random Fields
    Yue, Yu
    Speckman, Paul L.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (01) : 96 - 116
  • [28] Gaussian Markov random fields: Theory and applications
    Congdon, Peter
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 858 - 858
  • [29] Fast sampling of Gaussian Markov random fields
    Rue, H
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 325 - 338
  • [30] Encrypted traffic classification based on Gaussian mixture models and Hidden Markov Models
    Yao, Zhongjiang
    Ge, Jingguo
    Wu, Yulei
    Lin, Xiaosheng
    He, Runkang
    Ma, Yuxiang
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 166