LOWER SEMICONTINUITY OF APPROXIMATE SOLUTION MAPPING TO PARAMETRIC SET-VALUED WEAK VECTOR EQUILIBRIUM PROBLEMS

被引:0
|
作者
Zhao, Yong [1 ]
Peng, Zai-Yun [2 ,3 ]
Long, Xian-Jun [4 ]
Zeng, Jing [4 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610065, Sichuan, Peoples R China
[2] Chongqing JiaoTong Univ, Coll Math & Stat, Chongqing 400074, Peoples R China
[3] Univ British Columbia, Dept Math, Kelowna, BC V1V 1V7, Canada
[4] Chongqing Technol & Business Univ, Coll Math & Stat, Chongqing 400067, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2016年 / 12卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lower semicontinuity; scalarization; parametric set-valued weak vector equilibrium problem; approximate solution mapping; KY FAN INEQUALITY; GENERALIZED SYSTEMS; CONTINUITY; STABILITY; EXISTENCE;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, some stability results for parametric set-valued weak vector equilibrium problems are obtained. Under suitable assumptions, we establish the lower semicontinuity of the approximate solution mapping to a class of parametric set-valued weak vector equilibrium problem by using the scalarization method. These results extend and improve the corresponding ones in the literature. Some examples are given to illustrate the conclusions.
引用
收藏
页码:727 / 739
页数:13
相关论文
共 50 条