Multi-Resolution Climate Ensemble Parameter Analysis with Nested Parallel Coordinates Plots

被引:65
|
作者
Wang, Junpeng [1 ]
Liu, Xiaotong [1 ]
Shen, Han-Wei [1 ]
Lin, Guang [2 ]
机构
[1] Ohio State Univ, Columbus, OH 43210 USA
[2] Purdue Univ, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Parallel coordinates plots; parameter analysis; multi-resolution climate ensembles; FRITSCH CONVECTIVE PARAMETERIZATION; VISUALIZATION; SPACE; SCHEME; MODEL; TOOL;
D O I
10.1109/TVCG.2016.2598830
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Due to the uncertain nature of weather prediction, climate simulations are usually performed multiple times with different spatial resolutions. The outputs of simulations are multi-resolution spatial temporal ensembles. Each simulation run uses a unique set of values for multiple convective parameters. Distinct parameter settings from different simulation runs in different resolutions constitute a multi-resolution high-dimensional parameter space. Understanding the correlation between the different convective parameters, and establishing a connection between the parameter settings and the ensemble outputs are crucial to domain scientists. The multi-resolution high-dimensional parameter space, however, presents a unique challenge to the existing correlation visualization techniques. We present Nested Parallel Coordinates Plot (NPCP), a new type of parallel coordinates plots that enables visualization of intra-resolution and inter-resolution parameter correlations. With flexible user control, NPCP integrates superimposition, juxtaposition and explicit encodings in a single view for comparative data visualization and analysis. We develop an integrated visual analytics system to help domain scientists understand the connection between multi-resolution convective parameters and the large spatial temporal ensembles. Our system presents intricate climate ensembles with a comprehensive overview and on-demand geographic details. We demonstrate NPCP, along with the climate ensemble visualization system, based on real-world use-cases from our collaborators in computational and predictive science.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [31] Multi-resolution analysis in arbitrary Hilbert spaces
    Bagarello, F
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2001, 116 (03): : 299 - 315
  • [32] Multi-resolution analysis and damage identification of structure
    Jiao, Li
    Zhang, Hai
    Liu, Hong-wei
    [J]. ADVANCES IN CIVIL ENGINEERING AND ARCHITECTURE INNOVATION, PTS 1-6, 2012, 368-373 : 593 - 598
  • [33] Chaotic neural networks for multi-resolution analysis
    Liu, HB
    Wang, XK
    Tang, YY
    Zhang, SZ
    [J]. 2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1102 - 1105
  • [34] Multi-resolution image analysis for vehicle detection
    Hilario, C
    Collado, JM
    Armingol, JM
    de la Escalera, A
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS, 2005, 3522 : 579 - 586
  • [35] Multi-resolution entropy analysis of gait symmetry
    Liao, Fuyuan
    Wang, Jue
    [J]. Journal of Harbin Institute of Technology (New Series), 2007, 14 (SUPPL. 2) : 5 - 8
  • [36] Manifold topological multi-resolution analysis method
    You, Shaodi
    Ma, Huimin
    [J]. PATTERN RECOGNITION, 2011, 44 (08) : 1629 - 1648
  • [37] A parallel, multi-resolution sensing technique for multiple antenna cognitive radios
    Neihart, Nathan M.
    Roy, Sumit
    Allstot, David J.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 2530 - 2533
  • [38] Parallel construction and rendering of multi-resolution representation for massive meshes with GPU
    Zhang, Yaping
    Xu, Dan
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (05) : 3165 - 3172
  • [39] Cascaded parallel crowd counting network with multi-resolution collaborative representation
    Lei Lyu
    Run Han
    Ziming Chen
    [J]. Applied Intelligence, 2023, 53 : 3002 - 3016
  • [40] Multi-resolution Selective Ensemble Extreme Learning Machine for Electricity Consumption Prediction
    Song, Hui
    Qin, A. K.
    Salim, Flora D.
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 600 - 609