Assessment of an isogeometric approach with Catmull-Clark subdivision surfaces using the Laplace-Beltrami problems

被引:6
|
作者
Liu, Zhaowei [1 ]
McBride, Andrew [1 ]
Saxena, Prashant [1 ]
Steinmann, Paul [1 ,2 ]
机构
[1] Univ Glasgow, Glasgow Computat Engn Ctr, Glasgow G12 8LT, Lanark, Scotland
[2] Friedrich Alexander Univ Erlangen Nurnberg, Chair Appl Mech, Paul Gordan Str 3, D-91052 Erlangen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Isogeometric analysis; Finite element method; Catmull-Clark subdivision surfaces; Laplace-Beltrami equation; FINITE-ELEMENT-METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; BOUNDARY-CONDITIONS; POLYNOMIAL SPLINES; SHAPE OPTIMIZATION; INTEGRATION; ALGORITHMS;
D O I
10.1007/s00466-020-01877-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An isogeometric approach for solving the Laplace-Beltrami equation on a two-dimensional manifold embedded in three-dimensional space using a Galerkin method based on Catmull-Clark subdivision surfaces is presented and assessed. The scalar-valued Laplace-Beltrami equation requires only C-0 continuity and is adopted to elucidate key features and properties of the isogeometric method using Catmull-Clark subdivision surfaces. Catmull-Clark subdivision bases are used to discretise both the geometry and the physical field. A fitting method generates control meshes to approximate any given geometry with Catmull-Clark subdivision surfaces. The performance of the Catmull-Clark subdivision method is compared to the conventional finite element method. Subdivision surfaces without extraordinary vertices show the optimal convergence rate. However, extraordinary vertices introduce error, which decreases the convergence rate. A comparative study shows the effect of the number and valences of the extraordinary vertices on accuracy and convergence. An adaptive quadrature scheme is shown to reduce the error.
引用
收藏
页码:851 / 876
页数:26
相关论文
共 50 条
  • [21] Polygonal complexes for interpolating curves by Catmull-Clark subdivision surfaces
    Nasri, AH
    Abbas, A
    CAD/GRAPHICS '2001: PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN AND COMPUTER GRAPHICS, VOLS 1 AND 2, 2001, : 33 - 39
  • [22] Calculating the closest distance between catmull-clark subdivision surfaces
    Zhu, J.N.
    Wang, M.J.
    Wei, Z.C.
    Cao, B.
    International Journal of Applied Mathematics and Statistics, 2013, 40 (10): : 152 - 160
  • [23] Skinning Cubic Bezier Splines and Catmull-Clark Subdivision Surfaces
    Liu, Songrun
    Jacobson, Alec
    Gingold, Yotam
    ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (06):
  • [24] Calculating the Closest Distance between Catmull-Clark Subdivision Surfaces
    Zhu, J. N.
    Wang, M. J.
    Wei, Z. C.
    Cao, B.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 40 (10): : 152 - 160
  • [25] Feature-Adaptive GPU Rendering of Catmull-Clark Subdivision Surfaces
    Niessner, Matthias
    Loop, Charles
    Meyer, Mark
    Derose, Tony
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (01):
  • [26] Interpolating meshes of curves by Catmull-Clark subdivision surfaces with a shape parameter
    Abbas, A
    Nasri, A
    NINTH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2005, : 107 - 112
  • [27] Construction of Minimal Catmull-Clark's Subdivision Surfaces with Given Boundaries
    Pan, Qing
    Xu, Guoliang
    ADVANCES IN GEOMETRIC MODELING AND PROCESSING, PROCEEDINGS, 2010, 6130 : 206 - +
  • [28] Extended subdivision surfaces:: Building a bridge between NURBS and Catmull-Clark surfaces
    Muller, Kerstin
    Reusche, Lars
    Fellner, Dieter
    ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (02): : 268 - 292
  • [29] Edge-Friend: Fast and Deterministic Catmull-Clark Subdivision Surfaces
    Kuth, Bastian
    Oberberger, Max
    Chajdas, Matthaeus
    Meyer, Quirin
    COMPUTER GRAPHICS FORUM, 2023, 42 (08)
  • [30] Feature curves with cross curvature control on Catmull-Clark subdivision surfaces
    Nasri, A.
    Sabin, M.
    Abu Zaki, R.
    Nassiri, N.
    Santina, R.
    ADVANCES IN COMPUTER GRAPHICS, PROCEEDINGS, 2006, 4035 : 761 - 768