Attenuation Correction of PET/MR Using Deep Neural Network Based on Dixon and ZTE MR Images

被引:0
|
作者
Gong, Kuang [1 ]
Yang, Jaewon [3 ]
Kim, Kyungsang [1 ]
El Fakhri, Georges [2 ]
Seo, Youngho [4 ]
Li, Quanzheng [1 ]
机构
[1] Massachusetts Gen Hosp, Boston, MA 02114 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Boston, MA 02115 USA
[3] UCSF Radiol & Biomed Imaging, San Francisco, CA USA
[4] Univ Calif San Francisco, San Francisco, CA 94143 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
650
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Attenuation correction for brain PET imaging using deep neural network based on Dixon and ZTE MR images
    Gong, Kuang
    Yang, Jaewon
    Kim, Kyungsang
    El Fakhri, Georges
    Seo, Youngho
    Li, Quanzheng
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (12):
  • [2] Skull segmentation of UTE MR images by probabilistic neural network for attenuation correction in PET/MR
    Santos Ribeiro, A.
    Kops, E. Rota
    Herzog, H.
    Almeida, P.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 702 : 114 - 116
  • [3] ZTE-based attenuation correction in head and neck PET/MR
    Khalife, Maya
    de Laroche, Romain
    Beque, Dirk
    Sgard, Brian
    Perez-Garcia, Fernando
    Soret, Marine
    Amor, Melika Sahli
    Habert, Marie-Odile
    Wiesinger, Florian
    Kas, Aurelie
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [4] Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI
    Leynes, Andrew P.
    Yang, Jaewon
    Shanbhag, Dattesh D.
    Kaushik, Sandeep S.
    Seo, Youngho
    Hope, Thomas A.
    Wiesinger, Florian
    Larson, Peder E. Z.
    MEDICAL PHYSICS, 2017, 44 (03) : 902 - 913
  • [5] Attenuation correction using 3D deep convolutional neural network for brain 18F-FDG PET/MR: Comparison with Atlas, ZTE and CT based attenuation correction
    Blanc-Durand, Paul
    Khalife, Maya
    Sgard, Brian
    Kaushik, Sandeep
    Soret, Marine
    Tiss, Amal
    El Fakhri, Georges
    Habert, Marie-Odile
    Wiesinger, Florian
    Kas, Aurelie
    PLOS ONE, 2019, 14 (10):
  • [6] Feasibility of Deep Learning-Based PET/MR Attenuation Correction in the Pelvis Using Only Diagnostic MR Images
    Bradshaw, Tyler J.
    Zhao, Gengyan
    Jang, Hyungseok
    Liu, Fang
    McMillan, Alan B.
    TOMOGRAPHY, 2018, 4 (03) : 138 - 147
  • [7] Feasibility of ZTE-based coil localization for PET/MR attenuation correction
    Delso, Gaspar
    Khalighi, Mohammad Mehdi
    Epp, Sabrina
    Barbosa, Felipe de Galiza
    Sekine, Tetsuro
    ter Voert, Edwin
    Veit-Haibach, Patrick
    JOURNAL OF NUCLEAR MEDICINE, 2016, 57
  • [8] Clinical issues regarding misclassification by Dixon based PET/MR attenuation correction
    Kong, Eunjung
    Cho, Ihnho
    HELLENIC JOURNAL OF NUCLEAR MEDICINE, 2015, 18 (01): : 42 - 47
  • [9] Attenuation Correction for Amyloid PET Imaging Using Deep Learning Based on 3D UTE/Multi-Echo Dixon MR images
    Gong, Kuang
    Han, Paul
    Johnson, Keith
    El Fakhri, Georges
    Ma, Chao
    Li, Quanzheng
    JOURNAL OF NUCLEAR MEDICINE, 2020, 61
  • [10] Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging
    Liu, Fang
    Jang, Hyungseok
    Kijowski, Richard
    Bradshaw, Tyler
    McMillan, Alan B.
    RADIOLOGY, 2018, 286 (02) : 676 - 684