GenomicLand: Software for genome-wide association studies and genomic prediction

被引:11
|
作者
Azevedo, Camila Ferreira [1 ]
Nascimento, Moyses [1 ]
Fontes, Vitor Cunha [2 ]
Fonseca e Silva, Fabyano [3 ]
Vilela de Resende, Marcos Deon [4 ]
Cruz, Cosme Damiao [5 ]
机构
[1] Univ Fed Vicosa, Dept Estat, Lab Inteligencia Comp, Av PH Rolfs S-N,Campus Univ, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Vicosa, Grp Pesquisa Interacao Atmosfera Biosfera, Dept Engn Agr, Vicosa, MG, Brazil
[3] Univ Fed Vicosa, Dept Zootecnia, Vicosa, MG, Brazil
[4] Univ Fed Vicosa, Embrapa Florestas, Dept Engn Florestal, Vicosa, MG, Brazil
[5] Univ Fed Vicosa, Dept Biol Geral, Lab Bioinformat, Vicosa, MG, Brazil
来源
ACTA SCIENTIARUM-AGRONOMY | 2019年 / 41卷
关键词
statistical analysis; genomic analysis; molecular markers; biometrics; CARCASS TRAITS; SELECTION; MARKERS; MODELS;
D O I
10.4025/actasciagron.v41i1.45361
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
GenomicLand is free software intended for prediction and genomic association studies based on the R software. This computational tool has an intuitive interface and supports large genomic databases, without requiring the user to use the command line. GenomicLand is available in English, can be downloaded from the Internet (https://licaeufv.wordpress.com/), and requires the Windows or Linux operating system. The software includes statistical procedures based on mixed models, Bayesian inference, dimensionality reduction and artificial intelligence. Examples of data files that can be processed by GenomicLand are available. The examples are useful to learn about the operation of the modules and statistical procedures.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Enhancing genomic prediction with genome-wide association studies in multiparental maize populations
    Y Bian
    J B Holland
    Heredity, 2017, 118 : 585 - 593
  • [2] Enhancing genomic prediction with genome-wide association studies in multiparental maize populations
    Bian, Y.
    Holland, J. B.
    HEREDITY, 2017, 118 (06) : 585 - 593
  • [3] Genome-Wide Association and Genomic Prediction for Fry Color in Potato
    Byrne, Stephen
    Meade, Fergus
    Mesiti, Francesca
    Griffin, Denis
    Kennedy, Colum
    Milbourne, Dan
    AGRONOMY-BASEL, 2020, 10 (01):
  • [4] Risk Prediction Using Genome-Wide Association Studies
    Kooperberg, Charles
    LeBlanc, Michael
    Obenchain, Valerie
    GENETIC EPIDEMIOLOGY, 2010, 34 (07) : 643 - 652
  • [5] Genome-Wide Association Study and Genomic Prediction of Oxalate Content in Spinach
    Xiong, Haizheng
    Shi, Ainong
    Mou, Beiquan
    HORTSCIENCE, 2023, 58 (09) : S138 - S138
  • [6] Genome-wide association analysis and genomic prediction of thyroglobulin plasma levels
    Pleic, Nikolina
    Leko, Mirjana Babic
    Gunjaca, Ivana
    Boutin, Thibaud
    Torlak, Vesela
    Matana, Antonela
    Punda, Ante
    Polasek, Ozren
    Hayward, Caroline
    Zemunik, Tatijana
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 697 - 697
  • [7] Genome-Wide Association Study and Genomic Prediction of Disease Resistance in Spinach
    Shi, Ainong
    Bhattarai, Gehendra
    Xiong, Haizheng
    Avila, Carlos A.
    Liu, Bo
    Gyawali, Sanjaya
    Joshi, Vijay
    Stein, Larry
    Mou, Beiquan
    du Toit, Lindsey J.
    Correll, James C.
    HORTSCIENCE, 2023, 58 (09) : S209 - S209
  • [8] Genome-Wide Association Analysis and Genomic Prediction of Thyroglobulin Plasma Levels
    Pleic, Nikolina
    Babic Leko, Mirjana
    Gunjaca, Ivana
    Boutin, Thibaud
    Torlak, Vesela
    Matana, Antonela
    Punda, Ante
    Polasek, Ozren
    Hayward, Caroline
    Zemunik, Tatijana
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [9] Application of Bayesian genomic prediction methods to genome-wide association analyses
    Anna Wolc
    Jack C. M. Dekkers
    Genetics Selection Evolution, 54
  • [10] Application of Bayesian genomic prediction methods to genome-wide association analyses
    Wolc, Anna
    Dekkers, Jack C. M.
    GENETICS SELECTION EVOLUTION, 2022, 54 (01)