Predicting gene regulation by sigma factors in Bacillus subtilis from genome-wide data
被引:22
|
作者:
de Hoon, M. J. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, JapanUniv Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan
de Hoon, M. J. L.
[1
]
Makita, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, JapanUniv Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan
Makita, Y.
[1
]
论文数: 引用数:
h-index:
机构:
Imoto, S.
[1
]
Kobayashi, K.
论文数: 0引用数: 0
h-index: 0
机构:
Nara Inst Sci & Technol, Grad Sch Biol Sci, Nara 6300101, JapanUniv Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan
Kobayashi, K.
[2
]
Ogasawara, N.
论文数: 0引用数: 0
h-index: 0
机构:
Nara Inst Sci & Technol, Grad Sch Biol Sci, Nara 6300101, JapanUniv Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan
Ogasawara, N.
[2
]
Nakai, K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, JapanUniv Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan
Nakai, K.
[1
]
论文数: 引用数:
h-index:
机构:
Miyano, S.
[1
]
机构:
[1] Univ Tokyo, Ctr Human Genome, Inst Med Sci, Minato Ku, Tokyo 1088639, Japan
[2] Nara Inst Sci & Technol, Grad Sch Biol Sci, Nara 6300101, Japan
Motivation: Sigma factors regulate the expression of genes in Bacillus subtilis at the transcriptional level. We assess the accuracy of a fold-change analysis, Bayesian networks, dynamic models and supervised learning based on coregulation in predicting gene regulation by sigma factors from gene expression data. To improve the prediction accuracy, we combine sequence information with expression data by adding their log-likelihood scores and by using a logistic regression model. We use the resulting score function to discover currently unknown gene regulations by sigma factors. Results: The coregulation-based supervised learning method gave the most accurate prediction of sigma factors from expression data. We found that the logistic regression model effectively combines expression data with sequence information. In a genome-wide search, highly significant logistic regression scores were found for several genes whose transcriptional regulation is currently unknown. We provide the corresponding RNA polymerase binding sites to enable a straightforward experimental verification of these predictions.