Lp estimates for degenerate non-local Kolmogorov operators

被引:21
|
作者
Huang, L. [1 ]
Menozzi, S. [2 ,3 ]
Priola, E. [4 ]
机构
[1] INSA Toulouse, 135 Ave Rangueil, F-31077 Toulouse 04, France
[2] Univ Evry Val dEssonne, 23 Blvd France, F-91037 Evry, France
[3] Natl Res Univ, Higher Sch Econ, Shabolovka 31, Moscow, Russia
[4] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, Turin, Italy
基金
俄罗斯科学基金会;
关键词
Calderon-Zygmund estimates; Degenerate non-local operators; Stable processes; MAXIMAL REGULARITY; EQUATIONS; SPACES; DIFFUSION; DENSITIES; DRIVEN; L-2;
D O I
10.1016/j.matpur.2017.12.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let z = (x, y) is an element of R-d x RN-d , with 1 <= d <= N. We prove a priori estimates of the following type: parallel to Delta(alpha/2)(x) v parallel to(Lp(RN)) <= c(p)parallel to L(x)v + Sigma(N)(i,j=1) a(ij)z(i)partial derivative(zj) v parallel to(Lp(RN)), 1<p<infinity, for v is an element of C-0(infinity) (R-N), where L-x is a non-local operator comparable with the R-d-fractional Laplacian Delta(alpha/2)(x) in terms of symbols, alpha is an element of (0, 2). We require that when L-x is replaced by the classical R-d-Laplacian Delta(x), i.e., in the limit local case alpha = 2, the operator Delta(x)+ Sigma(N)(i,j=1) a(ij)z(i)partial derivative(zj), satisfy a weak type Hormander condition with invariance by suitable dilations. Such estimates were only known for alpha = 2. This is one of the first results on L-p estimates for degenerate non-local operators under Hormander type conditions. We complete our result on L-p-regularity for L-x + Sigma(N)(i,j=1) a(ij)z(i)partial derivative(zj), by proving estimates like parallel to Delta(alpha i/2)(yi) v parallel to(Lp(RN)) <= c(p)parallel to L(x)v + Sigma(N)(i,j=1) a(ij)z(i)partial derivative(zj) v parallel to(Lp(RN)), involving fractional Laplacians in the degenerate directions y(i) (here alpha(i )is an element of (0,1 Lambda alpha) depends on alpha and on the numbers of commutators needed to obtain the yi-direction). The last estimates are new even in the local limit case alpha = 2 which is also considered. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
下载
收藏
页码:162 / 215
页数:54
相关论文
共 50 条
  • [1] Boundedness of non-local operators with spatially dependent coefficients and Lp-estimates for non-local equations
    Dong, Hongjie
    Jung, Pilgyu
    Kim, Doyoon
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
  • [2] Poisson process and sharp constants in Lp and Schauder estimates for a class of degenerate Kolmogorov operators
    Marino, L.
    Priola, E.
    Menozzi, S.
    STUDIA MATHEMATICA, 2022, : 321 - 346
  • [3] Lp ESTIMATES FOR A CLASS OF DEGENERATE OPERATORS
    Metafune, Giorgio
    Negro, Luigi
    Spina, Chiara
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (5-6): : 1766 - 1791
  • [4] Lp-Liouville property for non-local operators
    Masamune, Jun
    Uemura, Toshihiro
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (17-18) : 2249 - 2267
  • [5] Superposition principle for non-local Fokker–Planck–Kolmogorov operators
    Michael Röckner
    Longjie Xie
    Xicheng Zhang
    Probability Theory and Related Fields, 2020, 178 : 699 - 733
  • [6] LOCAL INVERSE ESTIMATES FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS
    Aurada, M.
    Feischl, M.
    Fuhrer, T.
    Karkulik, M.
    Melenk, J. M.
    Praetorius, D.
    MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2651 - 2686
  • [7] On Lp-estimates for a class of non-local elliptic equations
    Dong, Hongjie
    Kim, Doyoon
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) : 1166 - 1199
  • [8] Superposition principle for non-local Fokker-Planck-Kolmogorov operators
    Roeckner, Michael
    Xie, Longjie
    Zhang, Xicheng
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 178 (3-4) : 699 - 733
  • [9] Global Lp estimates for degenerate Ornstein–Uhlenbeck operators
    Marco Bramanti
    Giovanni Cupini
    Ermanno Lanconelli
    Enrico Priola
    Mathematische Zeitschrift, 2010, 266 : 789 - 816
  • [10] Pointwise estimates for degenerate Kolmogorov equations with Lp-source term
    Ipocoana, Erica
    Rebucci, Annalaura
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (01)