Fortran subroutines for generating box-constrained optimization problems

被引:0
|
作者
Facchinei, F [1 ]
Judice, J
Soares, J
机构
[1] Univ Rome La Sapienza, Dipartimento Informat & Sistemist, Rome, Italy
[2] Univ Coimbra, Dept Matemat, P-3000 Coimbra, Portugal
来源
关键词
nonlinear programming test problems; optimization; test problems generation;
D O I
10.1145/275323.275332
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe a set of Fortran routines for generating box-constrained nonlinear programming test problems. The technique, as described by Facchinei et al. (this issue), allows the user to control relevant properties of the generated problems.
引用
收藏
页码:448 / 450
页数:3
相关论文
共 50 条
  • [31] DATA-PARALLEL QUADRATIC-PROGRAMMING ON BOX-CONSTRAINED PROBLEMS
    MCKENNA, MP
    MESIROV, JP
    ZENIOS, SA
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (03) : 570 - 589
  • [32] Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems
    Banihashemi, Nahid
    Kaya, C. Yalcin
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (03) : 726 - 760
  • [33] Optimization Methods for Box-Constrained Nonlinear Programming Problems Based on Linear Transformation and Lagrange Interpolating Polynomials
    Wu Z.-Y.
    Bai F.-S.
    Tian J.
    [J]. Journal of the Operations Research Society of China, 2017, 5 (2) : 193 - 218
  • [34] Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems
    Nahid Banihashemi
    C. Yalçın Kaya
    [J]. Journal of Optimization Theory and Applications, 2013, 156 : 726 - 760
  • [35] An efficient preconditioning method for state box-constrained optimal control problems
    Axelsson, Owe
    Neytcheva, Maya
    Strom, Anders
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2018, 26 (04) : 185 - 207
  • [36] Bounds tightening based on optimality conditions for nonconvex box-constrained optimization
    Puranik, Yash
    Sahinidis, Nikolaos V.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2017, 67 (1-2) : 59 - 77
  • [37] Bounds tightening based on optimality conditions for nonconvex box-constrained optimization
    Yash Puranik
    Nikolaos V. Sahinidis
    [J]. Journal of Global Optimization, 2017, 67 : 59 - 77
  • [38] Second-order negative-curvature methods for box-constrained and general constrained optimization
    Andreani, R.
    Birgin, E. G.
    Martinez, J. M.
    Schuverdt, M. L.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 45 (02) : 209 - 236
  • [39] Second-order negative-curvature methods for box-constrained and general constrained optimization
    R. Andreani
    E. G. Birgin
    J. M. Martínez
    M. L. Schuverdt
    [J]. Computational Optimization and Applications, 2010, 45 : 209 - 236
  • [40] Box-constrained minimization reformulations of complementarity problems in second-order cones
    Andreani, R.
    Friedlander, A.
    Mello, M. P.
    Santos, S. A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (04) : 505 - 527