Hyperbolicity-preserving and well-balanced stochastic Galerkin method for two-dimensional shallow water equations
被引:12
|
作者:
Dai, Dihan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USAUniv Utah, Dept Math, Salt Lake City, UT 84112 USA
Dai, Dihan
[1
,2
]
Epshteyn, Yekaterina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Dept Math, Salt Lake City, UT 84112 USAUniv Utah, Dept Math, Salt Lake City, UT 84112 USA
Epshteyn, Yekaterina
[1
]
论文数: 引用数:
h-index:
机构:
Narayan, Akil
[1
,2
]
机构:
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA
Finite volume method;
Stochastic Galerkin method;
Shallow water equations;
Hyperbolic systems of conservation and balance laws;
CENTRAL-UPWIND SCHEME;
POLYNOMIAL CHAOS;
CONSERVATION-LAWS;
UNCERTAINTY PROPAGATION;
DIFFERENTIAL-EQUATIONS;
BOLTZMANN-EQUATION;
TRIANGULAR GRIDS;
EULER EQUATIONS;
SYSTEMS;
RECONSTRUCTION;
D O I:
10.1016/j.jcp.2021.110901
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Stochastic Galerkin formulations of the two-dimensional shallow water systems parameterized with random variables may lose hyperbolicity, and hence change the nature of the original model. In this work, we present a hyperbolicity-preserving stochastic Galerkin formulation by carefully selecting the polynomial chaos approximations to the nonlinear terms in the shallow water equations. We derive a sufficient condition to preserve the hyperbolicity of the stochastic Galerkin system which requires only a finite collection of positivity conditions on the stochastic water height at selected quadrature points in parameter space. Based on our theoretical results for the stochastic Galerkin formulation, we develop a corresponding well-balanced hyperbolicity-preserving central-upwind scheme. We demonstrate the accuracy and the robustness of the new scheme on several challenging numerical tests. (C) 2021 Elsevier Inc. All rights reserved.
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Yan, Ruifang
Tong, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Tong, Wei
Chen, Guoxian
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Wuhan Univ, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
机构:
Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere, F-44322 Nantes 3, FranceUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere, F-44322 Nantes 3, France
Berthon, Christophe
Michel-Dansac, Victor
论文数: 0引用数: 0
h-index: 0
机构:
INSA Toulouse, Inst Math Toulouse, 135 Ave Rangueil, F-31077 Toulouse 4, France
Univ Toulouse 3 Paul Sabatier, 135 Ave Rangueil, F-31077 Toulouse 4, FranceUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere, F-44322 Nantes 3, France
机构:
Univ Paris Est, Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee 2, FranceUniv Paris Est, Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee 2, France
Ern, A.
论文数: 引用数:
h-index:
机构:
Piperno, S.
Djadel, K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee 2, FranceUniv Paris Est, Ecole Natl Ponts & Chaussees, CERMICS, F-77455 Marne La Vallee 2, France
机构:
Department of Mathematics, Oregon State University, Corvallis,OR,97331-4605, United StatesDepartment of Mathematics, Oregon State University, Corvallis,OR,97331-4605, United States