Ensemble machine learning approaches for webshell detection in Internet of things environments

被引:51
|
作者
Yong, Binbin [1 ]
Wei, Wei [2 ]
Li, Kuan-Ching [3 ]
Shen, Jun [4 ]
Zhou, Qingguo [1 ]
Wozniak, Marcin [5 ]
Polap, Dawid [5 ]
Damasevicius, Robertas [6 ]
机构
[1] Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou, Gansu, Peoples R China
[2] Xian Univ Technol, Sch Comp Sci & Engn, Xian, Peoples R China
[3] Providence Univ, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[4] Univ Wollongong, Sch Comp & Informat Technol, Wollongong, NSW, Australia
[5] Silesian Tech Univ, Inst Math, Gliwice, Poland
[6] Kaunas Univ Technol, Multimedia Engn Dept, Kaunas, Lithuania
基金
中国国家自然科学基金;
关键词
CLASSIFICATION; NAVIGATION; NETWORK; SECURE;
D O I
10.1002/ett.4085
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
The Internet of things (IoT), made up of a massive number of sensor devices interconnected, can be used for data exchange, intelligent identification, and management of interconnected "things." IoT devices are proliferating and playing a crucial role in improving the living quality and living standard of the people. However, the real IoT is more vulnerable to attack by countless cyberattacks from the Internet, which may cause privacy data leakage, data tampering and also cause significant harm to society and individuals. Network security is essential in the IoT system, and Web injection is one of the most severe security problems, especially the webshell. To develop a safe IoT system, in this article, we apply essential machine learning models to detect webshell to build secure solutions for IoT network. Future, ensemble methods including random forest (RF), extremely randomized trees (ET), and Voting are used to improve the performances of these machine learning models. We also discuss webshell detection in lightweight and heavyweight computing scenarios for different IoT environments. Extensive experiments have been conducted on these models to verify the validity of webshell intrusion. Simulation results show that RF and ET are suitable for lightweight IoT scenarios, and Voting method is effective for heavyweight IoT scenarios.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Machine Learning for the Detection and Identification of Internet of Things Devices: A Survey
    Liu, Yongxin
    Wang, Jian
    Li, Jianqiang
    Niu, Shuteng
    Song, Houbing
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (01) : 298 - 320
  • [22] Machine Learning Explainability for Intrusion Detection in the Industrial Internet of Things
    Ahakonye L.A.C.
    Nwakanma C.I.
    Lee J.M.
    Kim D.-S.
    IEEE Internet of Things Magazine, 2024, 7 (03): : 68 - 74
  • [23] Autonomous machine learning for early bot detection in the internet of things
    Araujo, Alex Medeiros
    de Neira, Anderson Bergamini
    Nogueira, Michele
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (06) : 1301 - 1309
  • [24] Detection of Phishing in Internet of Things Using Machine Learning Approach
    Naaz, Sameena
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2021, 13 (02) : 1 - 15
  • [25] Autonomous machine learning for early bot detection in the internet of things
    Alex Medeiros Araujo
    Anderson Bergamini de Neira
    Michele Nogueira
    Digital Communications and Networks, 2023, 9 (06) : 1301 - 1309
  • [26] Ensemble Machine Learning Approaches for Detection of SQL Injection Attack
    Farooq, Umar
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2021, 15 (01): : 112 - 120
  • [27] An Explainable Ensemble Deep Learning Approach for Intrusion Detection in Industrial Internet of Things
    Shtayat, Mousa'B Mohammad
    Hasan, Mohammad Kamrul
    Sulaiman, Rossilawati
    Islam, Shayla
    Khan, Atta Ur Rehman
    IEEE ACCESS, 2023, 11 : 115047 - 115061
  • [28] Ensemble Feature Engineering and Deep Learning for Botnet Attacks Detection in the Internet of Things
    Sheheryar, Mir Aman
    Sharma, Sparsh
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2025, 36 (03):
  • [29] A Hybrid Ensemble Learning-based Intrusion Detection System for the Internet of Things
    Alani, Mohammed M.
    Awad, Ali Ismail
    Barkat, Ezedin
    2024 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2024, : 1 - 8
  • [30] Smart reference evapotranspiration using Internet of Things and hybrid ensemble machine learning approach
    Bashir, Rab Nawaz
    Saeed, Mahlaqa
    Al-Sarem, Mohammed
    Marie, Rashiq
    Faheem, Muhammad
    Karrar, Abdelrahman Elsharif
    Elhussein, Bahaeldein
    INTERNET OF THINGS, 2023, 24