A Variation on Euler's Formula for Pi SOLUTION

被引:0
|
作者
Kouba, Omran [1 ]
机构
[1] Higher Inst Appl Sci & Technol, Damascus, Syria
来源
AMERICAN MATHEMATICAL MONTHLY | 2019年 / 126卷 / 05期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:471 / 472
页数:2
相关论文
共 50 条
  • [21] An Olympiad problem, Euler's sequence, and Stirling's formula
    Benyi, A
    FIBONACCI QUARTERLY, 2002, 40 (04): : 295 - 298
  • [22] Refinements of Gurland's formula for pi
    Mortici, Cristinel
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (06) : 2616 - 2620
  • [23] Betti numbers and Euler's formula for combinatorial foliations
    Elek, G
    MANUSCRIPTA MATHEMATICA, 1997, 92 (02) : 239 - 247
  • [24] Another formulation of Euler's formula and its application
    Niizeki, Shozo
    Araki, Makoto
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (02) : 274 - 276
  • [25] Generalization of Euler's summation formula to path integrals
    Bogojevic, A
    Balaz, A
    Belic, A
    PHYSICS LETTERS A, 2005, 344 (2-4) : 84 - 90
  • [26] Justifying Euler's formula through motion in a plane
    Svetlik, Marek
    Radojicic, Marija
    Radovic, Slavisa
    Simic-Muller, Ksenija
    MATHEMATICS ENTHUSIAST, 2018, 15 (03):
  • [27] AN APPROXIMATION FORMULA FOR EULER-MASCHERONI'S CONSTANT
    Panzone, Pablo A.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2016, 57 (01): : 9 - 22
  • [28] The flaw in Euler's proof of his polyhedral formula
    Francese, Christopher
    Richeson, David
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (04): : 286 - 296
  • [29] Betti numbers and Euler’s formula for combinatorial foliations
    Gábor Elek
    manuscripta mathematica, 1997, 92 : 239 - 247
  • [30] Euler's gem: the polyhedron formula and the birth of topology
    Wilson, Robin
    BSHM BULLETIN-JOURNAL OF THE BRITISH SOCIETY FOR THE HISTORY OF MATHEMATICS, 2009, 24 (03): : 196 - 198