Rates of superlinear convergence for classical quasi-Newton methods

被引:24
|
作者
Rodomanov, Anton [1 ]
Nesterov, Yurii [2 ]
机构
[1] Catholic Univ Louvain, Inst Informat & Commun Technol, Elect & Appl Math, Louvain La Neuve, Belgium
[2] Catholic Univ Louvain, Ctr Operat Res & Econometr, Louvain La Neuve, Belgium
基金
欧洲研究理事会;
关键词
Quasi-Newton methods; Convex Broyden class; DFP; BFGS; Superlinear convergence; Local convergence; Rate of convergence;
D O I
10.1007/s10107-021-01622-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the local convergence of classical quasi-Newton methods for nonlinear optimization. Although it was well established a long time ago that asymptotically these methods converge superlinearly, the corresponding rates of convergence still remain unknown. In this paper, we address this problem. We obtain first explicit non-asymptotic rates of superlinear convergence for the standard quasi-Newton methods, which are based on the updating formulas from the convex Broyden class. In particular, for the well-known DFP and BFGS methods, we obtain the rates of the form (nL(2)/mu(2)k)(k/2) and (nL/mu k)(k/2) respectively, where k is the iteration counter, n is the dimension of the problem, mu is the strong convexity parameter, and L is the Lipschitz constant of the gradient.
引用
收藏
页码:159 / 190
页数:32
相关论文
共 50 条
  • [41] Proximal quasi-Newton methods for regularized convex optimization with linear and accelerated sublinear convergence rates
    Hiva Ghanbari
    Katya Scheinberg
    Computational Optimization and Applications, 2018, 69 : 597 - 627
  • [42] Convergence of quasi-Newton methods for solving constrained generalized equations*
    Andreani, Roberto
    Carvalho, Rui M.
    Secchin, Leonardo D.
    Silva, Gilson N.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [43] A CONVERGENCE THEORY FOR A CLASS OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    FONTECILLA, R
    STEIHAUG, T
    TAPIA, RA
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) : 1133 - 1151
  • [44] Proximal quasi-Newton methods for regularized convex optimization with linear and accelerated sublinear convergence rates
    Ghanbari, Hiva
    Scheinberg, Katya
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (03) : 597 - 627
  • [45] DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlinear Convergence Rate
    Soori, Saeed
    Mischenko, Konstantin
    Mokhtari, Aryan
    Dehnavi, Maryam Mehri
    Gurbuzbalaban, Mert
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [46] QUASI-NEWTON METHODS FOR SADDLEPOINTS
    BIEGLERKONIG, F
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 47 (04) : 393 - 399
  • [47] Stochastic Quasi-Newton Methods
    Mokhtari, Aryan
    Ribeiro, Alejandro
    PROCEEDINGS OF THE IEEE, 2020, 108 (11) : 1906 - 1922
  • [48] A classification of quasi-Newton methods
    Brezinski, C
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 123 - 135
  • [49] APPROXIMATE QUASI-NEWTON METHODS
    KELLEY, CT
    SACHS, EW
    MATHEMATICAL PROGRAMMING, 1990, 48 (01) : 41 - 70
  • [50] Decentralized Quasi-Newton Methods
    Eisen, Mark
    Mokhtari, Aryan
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (10) : 2613 - 2628