Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma

被引:4
|
作者
Venianaki, M. [1 ,2 ]
Salvetti, O. [3 ]
de Bree, E. [4 ]
Maris, T. [5 ]
Karantanas, A. [5 ]
Kontopodis, E. [2 ]
Nikiforaki, K. [2 ]
Marias, K. [2 ]
机构
[1] IMT Sch Adv Studies Lucca, Image Anal Res Unit, Lucca, Italy
[2] Fdn Res & Technol Hellas, Inst Comp Sci, Computat Biomed Lab, Iraklion, Greece
[3] CNR, Area Ric CNR Pisa, Ist Sci & Tecnol Informaz Alessandro Faedo, Pisa, Italy
[4] Crete Univ Hosp, Dept Surg Oncol, Sch Med, Iraklion, Greece
[5] Univ Crete, Dept Radiol, Sch Med, Iraklion, Greece
基金
欧盟第七框架计划;
关键词
Pattern recognition; Dynamic MR imaging; Biomedical image processing; Soft tissue sarcomas; Tumor hypoxia; Matrix factorization; CONTRAST-ENHANCED MRI; NONNEGATIVE MATRIX FACTORIZATION; SOFT-TISSUE SARCOMAS; MODEL; BREAST; PARAMETERS; FEASIBILITY; ALGORITHMS;
D O I
10.1007/s11042-017-5046-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main purpose of this study is to analyze the intrinsic tumor physiologic characteristics in patients with sarcoma through model-free analysis of dynamic contrast enhanced MR imaging data (DCE-MRI). Clinical data were collected from three patients with two different types of histologically proven sarcomas who underwent conventional and advanced MRI examination prior to excision. An advanced matrix factorization algorithm has been applied to the data, resulting in the identification of the principal time-signal uptake curves of DCE-MRI data, which were used to characterize the physiology of the tumor area, described by three different perfusion patterns i.e. hypoxic, well-perfused and necrotic one. The performance of the algorithm was tested by applying different initialization approaches with subsequent comparison of their results. The algorithm was proven to be robust and led to the consistent segmentation of the tumor area in three regions of different perfusion, i.e. well-perfused, hypoxic and necrotic. Results from the model-free approach were compared with a widely used pharmacokinetic (PK) model revealing significant correlations.
引用
收藏
页码:9417 / 9439
页数:23
相关论文
共 50 条
  • [1] Pattern recognition and pharmacokinetic methods on DCE-MRI data for tumor hypoxia mapping in sarcoma
    M. Venianaki
    O. Salvetti
    E. de Bree
    T. Maris
    A. Karantanas
    E. Kontopodis
    K. Nikiforaki
    K. Marias
    Multimedia Tools and Applications, 2018, 77 : 9417 - 9439
  • [2] DCE-MRI of Tumor Hypoxia and Hypoxia-Associated Aggressiveness
    Gaustad, Jon-Vidar
    Hauge, Anette
    Wegner, Catherine S.
    Simonsen, Trude G.
    Lund, Kjersti, V
    Hansem, Lise Mari K.
    Rofstad, Einar K.
    CANCERS, 2020, 12 (07) : 1 - 14
  • [3] Data-driven mapping of hypoxia-related tumor heterogeneity using DCE-MRI and OE-MRI
    Featherstone, Adam K.
    O'Connor, James P. B.
    Little, Ross A.
    Watson, Yvonne
    Cheung, Sue
    Babur, Muhammad
    Williams, Kaye J.
    Matthews, Julian C.
    Parker, Geoff J. M.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (04) : 2236 - 2245
  • [4] Probabilistic nested model selection in pharmacokinetic analysis of DCE-MRI data in animal model of cerebral tumor
    Hassan Bagher-Ebadian
    Stephen L. Brown
    Mohammad M. Ghassemi
    Prabhu C. Acharya
    Indrin J. Chetty
    Benjamin Movsas
    James R. Ewing
    Kundan Thind
    Scientific Reports, 15 (1)
  • [5] Pharmacokinetic perfusion curves estimation for liver tumor diagnosis from DCE-MRI
    Caldeira, Liliana L.
    Sanches, Joao M.
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 789 - 797
  • [6] DCE-MRI as a biomarker of tumor angiogenesis
    Jayson, G.
    EJC SUPPLEMENTS, 2007, 5 (08): : 9 - 9
  • [7] Liver tumor assessment with DCE-MRI
    Caldeira, Liliana
    Sanches, Joao
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 804 - 807
  • [8] Assessing Treatment Response Through Generalized Pharmacokinetic Modeling of DCE-MRI Data
    Kontopodis, Eleftherios
    Kanli, Georgia
    Manikis, Georgios C.
    Van Cauter, Sofie
    Marias, Kostas
    CANCER INFORMATICS, 2015, 14 : 41 - 51
  • [9] The Influence of Temporal Resolution in Determining Pharmacokinetic Parameters From DCE-MRI Data
    Heisen, Marieke
    Fan, Xiaobing
    Buurman, Johannes
    van Riel, Natal A. W.
    Karczmar, Gregory S.
    Romeny, Bart M. ter Haar
    MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (03) : 811 - 816
  • [10] Mapping Tumor Hypoxia In Vivo Using Pattern Recognition of Dynamic Contrast-enhanced MRI Data
    Stoyanova, Radka
    Huang, Kris
    Sandler, Kiri
    Cho, HyungJoon
    Carlin, Sean
    Zanzonico, Pat B.
    Koutcher, Jason A.
    Ackerstaff, Ellen
    TRANSLATIONAL ONCOLOGY, 2012, 5 (06) : 437 - U114