A Triangle Inequality from Cauchy-Schwarz

被引:0
|
作者
Zhou, Li [1 ]
机构
[1] Polk State Coll, Winter Haven, FL 33881 USA
来源
AMERICAN MATHEMATICAL MONTHLY | 2021年 / 128卷 / 04期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:377 / 378
页数:2
相关论文
共 50 条
  • [31] A CAUCHY-SCHWARZ INEQUALITY FOR OPERATORS WITH APPLICATIONS
    BHATIA, R
    DAVIS, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 224 : 119 - 129
  • [32] A CAUCHY-SCHWARZ INEQUALITY FOR TRIPLES OF VECTORS
    Arav, Marina
    Hall, Frank J.
    Li, Zhongshan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (04): : 629 - 634
  • [33] ON A SPECIAL FORM OF THE CAUCHY-SCHWARZ INEQUALITY
    THIELE, L
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1985, 319 (04): : 405 - 412
  • [34] Cauchy-Schwarz inequality and particle entanglement
    Wasak, T.
    Szankowski, P.
    Zin, P.
    Trippenbach, M.
    Chwedenczuk, J.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [35] Remark on a refinement of the Cauchy-Schwarz inequality
    Zheng, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (01) : 13 - 21
  • [36] QUADRUPLE INEQUALITIES: BETWEEN CAUCHY-SCHWARZ AND TRIANGLE
    Schoetz, Christof
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04): : 809 - 832
  • [37] Bell inequality for qubits based on the Cauchy-Schwarz inequality
    Chen, Jing-Ling
    Deng, Dong-Ling
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [38] REFINEMENTS OF THE CAUCHY-SCHWARZ INEQUALITY FOR τ-MEASURABLE OPERATORS
    Han, Yazhou
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 919 - 931
  • [39] A strengthened Cauchy-Schwarz inequality for biorthogonal wavelets
    De Rossi, A
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (02): : 263 - 282
  • [40] REMARK ON A RECENT GENERALIZATION OF CAUCHY-SCHWARZ INEQUALITY
    MCLAUGHLIN, HW
    METCALF, FT
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1967, 18 (03) : 522 - +