Johnson Quantile-Parameterized Distributions

被引:5
|
作者
Hadlock, Christopher C. [1 ]
Bickel, J. Eric [1 ]
机构
[1] Univ Texas Austin, Grad Program Operat Res & Ind Engn, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
uncertainty; subjective probability; modeling; decision analysis; quantile function; MATHEMATICAL CONTRIBUTIONS; SUPPLEMENT; EVOLUTION; MEMOIR;
D O I
10.1287/deca.2016.0343
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
It is common decision analysis practice to elicit quantiles of continuous uncertainties and then fit a continuous probability distribution to the corresponding probabilityquantile pairs. This process often requires curve fitting and the best-fit distribution will often not honor the assessed points. By strategically extending the Johnson Distribution System, we develop a new distribution system that honors any symmetric percentile triplet of quantile assessments (e.g., the 10th-50th-90th) in conjunction with specified support bounds. Further, our new system is directly parameterized by the assessed quantiles and support bounds, eliminating the need to apply a fitting procedure. Our new system is practical, flexible, and, as we demonstrate, able to match the shapes of numerous commonly named distributions.
引用
收藏
页码:35 / 64
页数:30
相关论文
共 50 条
  • [1] Quantile-Parameterized Distributions
    Keelin, Thomas W.
    Powley, Bradford W.
    DECISION ANALYSIS, 2011, 8 (03) : 206 - 219
  • [2] The Generalized Johnson Quantile-Parameterized Distribution System
    Hadlock, Christopher C.
    Bickel, J. Eric
    DECISION ANALYSIS, 2019, 16 (01) : 67 - 85
  • [3] QUANTILE ESTIMATORS OF JOHNSON CURVE PARAMETERS
    WHEELER, RE
    BIOMETRIKA, 1980, 67 (03) : 725 - 728
  • [4] Fully Parameterized Quantile Function for Distributional Reinforcement Learning
    Yang, Derek
    Zhao, Li
    Lin, Zichuan
    Qin, Tao
    Bian, Jiang
    Liu, Tieyan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [5] Bayesian estimation of quantile distributions
    D. Allingham
    R. A. R. King
    K. L. Mengersen
    Statistics and Computing, 2009, 19 : 189 - 201
  • [6] Improving ABC for quantile distributions
    McVinish, R.
    STATISTICS AND COMPUTING, 2012, 22 (06) : 1199 - 1207
  • [7] Improving ABC for quantile distributions
    R. McVinish
    Statistics and Computing, 2012, 22 : 1199 - 1207
  • [8] Bayesian estimation of quantile distributions
    Allingham, D.
    King, R. A. R.
    Mengersen, K. L.
    STATISTICS AND COMPUTING, 2009, 19 (02) : 189 - 201
  • [9] Maximum entropy distributions with quantile information
    Bajgiran, Amirsaman H.
    Mardikoraem, Mahsa
    Soofi, Ehsan S.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (01) : 196 - 209
  • [10] QUANTILE AND CONTOUR REGIONS FOR MULTIVARIATE DISTRIBUTIONS
    SAUNDERS, R
    LAUD, P
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 316 - 316