Generalized exponents and forms

被引:0
|
作者
Shepler, A [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
关键词
reflection group; invariant theory; generalized exponents; Coxeter group; fake degree; hyperplane arrangement; derivations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider generalized exponents of a finite reflection group acting on a real or complex vector space V. These integers are the degrees in which an irreducible representation of the group occurs in the coinvariant algebra. A basis for each isotypic component arises in a natural way from a basis of invariant generalized forms. We investigate twisted reflection representations (V tensor a linear character) using the theory of semi-invariant differential forms. Springer's theory of regular numbers gives a formula when the group is generated by dim V reflections. Although our arguments are case-free, we also include explicit data and give a method (using differential operators) for computing semi-invariants and basic derivations. The data give bases for certain isotypic components of the coinvariant algebra.
引用
收藏
页码:115 / 132
页数:18
相关论文
共 50 条
  • [41] GENERALIZED LYAPUNOV EXPONENTS CORRESPONDING TO HIGHER DERIVATIVES
    DRESSLER, U
    FARMER, JD
    PHYSICA D, 1992, 59 (04): : 365 - 377
  • [42] On the q-Exponents of Generalized Modular Functions
    G. K. Viswanadham
    The Ramanujan Journal, 2017, 44 : 1 - 11
  • [43] Exact Lyapunov exponents of the generalized Boole transformations
    Umeno, Ken
    Okubo, Ken-ichi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (02):
  • [44] GENERALIZED EXPONENTS OF SMALL REPRESENTATIONS. II
    Ion, Bogdan
    REPRESENTATION THEORY, 2011, 15 : 433 - 493
  • [45] Generalized exponents of primitive, nearly reducible matrices
    Liu, BL
    ARS COMBINATORIA, 1999, 51 : 229 - 239
  • [46] On generalized bent functions with Dillon's exponents
    Bajric, Samed
    Pasalic, Enes
    Ribic-Muratovic, Amela
    Sugata, Gangopadhyay
    INFORMATION PROCESSING LETTERS, 2014, 114 (04) : 222 - 227
  • [47] ON THE GENERALIZED EXPONENTS OF CLASSICAL LIE-GROUPS
    MATSUZAWA, J
    COMMUNICATIONS IN ALGEBRA, 1988, 16 (12) : 2579 - 2623
  • [48] The set of generalized exponents of primitive simple graphs
    Shao, JY
    Li, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 258 : 95 - 127
  • [49] Diophantine exponents for systems of linear forms in two variables
    Moshchevitin, Nikolay G.
    ACTA SCIENTIARUM MATHEMATICARUM, 2013, 79 (1-2): : 347 - 367
  • [50] Diophantine exponents for systems of linear forms in two variables
    Nikolay G. Moshchevitin
    Acta Scientiarum Mathematicarum, 2013, 79 (1-2): : 347 - 367