Combined steam and CO2 reforming of methane over Co-Ce/AC-N catalyst: Effect of preparation methods on catalyst activity and stability

被引:20
|
作者
Zhang, Yu [1 ,2 ]
Wang, Jiming [1 ,2 ]
Zhang, Guojie [1 ,2 ]
Liu, Jun [3 ,4 ]
Dou, Lizhen [1 ,2 ]
Xu, Ying [5 ]
Li, Guoqiang [1 ,2 ]
机构
[1] Taiyuan Univ Technol, State Key Lab Clean & Efficient Coal Utilizat, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Key Lab Coal Sci & Technol, Minist Educ, Taiyuan 030024, Shanxi, Peoples R China
[3] Taiyuan Univ Technol, Coll Chem & Chem Engn, Taiyuan 030024, Shanxi, Peoples R China
[4] Tsinghua Univ, Sch Environm, Natl Engn Lab Multi Flue Gas Pollut Control Techn, Beijing 100084, Peoples R China
[5] Guangxi Normal Univ Nationalities, Coll Chem & Biol Sci, Chongzuo 532200, Guangxi Zhuang, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane; Carbon dioxide; Combined reforming; Activated carbon; Preparation method; HYDROGEN-PRODUCTION; CARBON-DIOXIDE; SOL-GEL; SYNTHESIS GAS; SEMI-COKE; DRY; SYNGAS; PERFORMANCE; CA; ZIRCONIA;
D O I
10.1016/j.ijhydene.2021.10.202
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An appropriate preparation method is the essential to improve the catalyst performance. In this study, Co-Ce/AC-N catalysts were fabricated on N-doped activated carbon supports by impregnation, sol-gel, precipitation and mix methods, respectively. It was used to catalyze the combined steam and dry reforming of methane (CSDRM). The effects of different preparation methods on the catalyst performance were investigated by means of N2 adsorption-desorption, XRD, H-2-TPR, TEM, CO2-TPD, FTIR and XPS. Compare with the catalysts prepared by other methods, the catalyst prepared by impregnation exhibits a large surface area, high active metal dispersion, and strong metal-support interaction. Meanwhile, it also has strong basic sites and abundant oxygen vacancies. These greatly improve the activity and stability of the catalyst. The conversions of CH4 and CO2 at 650 degrees C were achieved 71.6% and 64.4%, and H-2/CO was retained at 1.5. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2914 / 2925
页数:12
相关论文
共 50 条
  • [31] Simultaneous oxidative conversion and CO2 or steam reforming of methane to syngas over CoO-NiO-MgO catalyst
    Choudhary, VR
    Mamman, AS
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 1998, 73 (04) : 345 - 350
  • [32] Combined steam and CO2 reforming of methane (CSCRM) over Ni-Pd/Al2O3 catalyst for syngas formation
    Batebi, Dania
    Abedini, Reza
    Mosayebi, Amir
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (28) : 14293 - 14310
  • [33] Catalytic performance of dioxide reforming of methane over Co/AC-N catalysts: Effect of nitrogen doping content and calcination temperature
    Sun, Yinghui
    Zhang, Guojie
    Xu, Ying
    Zhang, Riguang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (31) : 16424 - 16435
  • [34] Enhanced activity and coke resistivity of NiCoFe nanoalloy catalyst in CO2 reforming of methane
    Das, Subhasis
    Tillmann, Lukas
    Xia, Wei
    Muhler, Martin
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2023, 100 (08)
  • [35] CO2 Reforming with Ethanol Over Bimetallic Co(Ni)/ZnO Catalyst with Enhanced Activity: Synergistic Effect of Ni and Co
    Wang, Mingyue
    Li, Ting
    Tian, Yuhao
    Zhang, Jiarong
    Cai, Weijie
    CATALYSIS LETTERS, 2024, 154 (07) : 3829 - 3838
  • [36] Effect of pressure on catalyst activity and carbon deposition during CO2 reforming of methane over noble-metal catalysts
    Shamsi, A
    Johnson, CD
    ENVIRONMENTAL CHALLENGES AND GREENHOUSE GAS CONTROL FOR FOSSIL FUEL UTILIZATION IN THE 21ST CENTURY, 2002, : 269 - 283
  • [37] CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst
    Choudhary, Vasant R.
    Mondal, Kartick C.
    APPLIED ENERGY, 2006, 83 (09) : 1024 - 1032
  • [38] Effect of Support on Stability and Coke Resistance of Ni-Based Catalyst in Combined Steam and CO2 Reforming of CH4
    Phan Hong Phuong
    Ha Cam Anh
    Nguyen Tri
    Nguyen Phung Anh
    Luu Cam Loc
    ACS OMEGA, 2022, 7 (23): : 20092 - 20103
  • [39] Steam/CO2 Reforming of Methane Over Impregnated Ni/CeO2 Catalysts: Effect of Sample Composition on Their Activity and Stability
    Matus, E., V
    Sukhova, O. B.
    Ismagilov, I. Z.
    Ushakov, V. A.
    Yashnik, S. A.
    Kerzhentsev, M. A.
    Ismagilov, Z. R.
    EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL, 2022, 24 (03) : 191 - 202
  • [40] CO2 reforming of methane to syngas at high pressure over bi-component Ni-Co catalyst: The anti-carbon deposition and stability of catalyst
    Wu, Hao
    Liu, JiaXiong
    Liu, Huimin
    He, Dehua
    FUEL, 2019, 235 : 868 - 877