High-performance computation of pricing two-asset American options under the Merton jump-diffusion model on a GPU

被引:2
|
作者
Ghosh, Abhijit [1 ]
Mishra, Chittaranjan [1 ]
机构
[1] Indian Inst Technol Ropar, Dept Math, Rupnagar 140001, Punjab, India
关键词
American options; Partial integro-differential complementarity problem; Alternating direction implicit scheme; Parallel cyclic reduction; GPU computing; FINITE-DIFFERENCE SCHEMES; STOCHASTIC VOLATILITY; NUMERICAL-SOLUTION; EQUATION; ALGORITHM; EFFICIENT; RETURNS;
D O I
10.1016/j.camwa.2021.11.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with fast, parallel and numerically accurate pricing of two-asset American options under the Merton jump-diffusion model, which gives rise to a two-dimensional partial integro-differential complementarity problem (PIDCP) with a nonlocal two-dimensional integral term. Following method-of-lines approach, the solution to the PIDCP can be computed quite accurately by a robust numerical technique that combines Ikonen-Toivanen splitting with an alternating direction implicit scheme. However, we observed that computing the numerical solution with this technique becomes extremely time consuming, mainly due to the handling of the integral term. In this paper we parallelize this technique by applying a parallel fast Fourier transformation algorithm to all matrix-vector multiplications involving the huge and dense integral approximation matrix by exploiting its block Toeplitz with Toeplitz block structure. We also parallelize other computationally intensive steps of this technique by applying a recently developed parallel cyclic reduction algorithm for pentadiagonal systems. Our solutions computed on a graphics processing unit (GPU) using CUDA (R) platform are compared for accuracy with those available in the literature. It is observed that by solving the PIDCP parallelly we could bring down the computational times from several hours to a few seconds in certain cases in our experiments.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [41] Detecting Jump Risk and Jump-Diffusion Model for Bitcoin Options Pricing and Hedging
    Chen, Kuo-Shing
    Huang, Yu-Chuan
    [J]. MATHEMATICS, 2021, 9 (20)
  • [42] Reduced Order Models for Pricing American Options under Stochastic Volatility and Jump-Diffusion Models
    Balajewicz, Maciej
    Toivanen, Jari
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 734 - 743
  • [43] Robust spectral method for numerical valuation of european options under Merton's jump-diffusion model
    Pindza, E.
    Patidar, K. C.
    Ngounda, E.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (04) : 1169 - 1188
  • [44] PRICING TWO-ASSET BARRIER OPTIONS UNDER STOCHASTIC CORRELATION VIA PERTURBATION
    Escobar, Marcos
    Goetz, Barbara
    Neykova, Daniela
    Zagst, Rudi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (03)
  • [45] Numerical valuation of two-asset options under jump diffusion models using Gauss-Hermite quadrature
    Fakharany, M.
    Egorova, V. N.
    Company, R.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 822 - 834
  • [46] Pricing equity warrants with a promised lowest price in Merton's jump-diffusion model
    Xiao, Weilin
    Zhang, Xili
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 458 : 219 - 238
  • [47] Numerical approximation for options pricing of a stochastic volatility jump-diffusion model
    Aboulaich, R.
    Baghery, F.
    Jraifi, A.
    [J]. 1600, Centre for Environment Social and Economic Research, Post Box No. 113, Roorkee, 247667, India (50): : 69 - 82
  • [48] Numerical analysis of American option pricing in a jump-diffusion model
    Zhang, XL
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1997, 22 (03) : 668 - 690
  • [49] RBF-PU method for pricing options under the jump-diffusion model with local volatility
    Mollapourasl, Reza
    Fereshtian, Ali
    Li, Hengguang
    Lu, Xun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 98 - 118
  • [50] Pricing discrete path-dependent options under a double exponential jump-diffusion model
    Fuh, Cheng-Der
    Luo, Sheng-Feng
    Yen, Ju-Fang
    [J]. JOURNAL OF BANKING & FINANCE, 2013, 37 (08) : 2702 - 2713