Comparative Analysis of Machine Learning Models for Performance Prediction of the SPEC Benchmarks

被引:2
|
作者
Tousi, Ashkan [1 ]
Lujan, Mikel [1 ]
机构
[1] Univ Manchester, Dept Comp Sci, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Benchmark testing; Predictive models; Data models; Feature extraction; Software; Hardware; Analytical models; Machine learning; performance analysis; predictive models; SPEC CPU2017; supervised learning; REGRESSION; SELECTION;
D O I
10.1109/ACCESS.2022.3142240
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simulation-based performance prediction is cumbersome and time-consuming. An alternative approach is to consider supervised learning as a means of predicting the performance scores of Standard Performance Evaluation Corporation (SPEC) benchmarks. SPEC CPU2017 contains a public dataset of results obtained by executing 43 standardised performance benchmarks organised into 4 suites on various system configurations. This paper analyses the dataset and aims to answer the following questions: I) can we accurately predict the SPEC results based on the configurations provided in the dataset, without having to actually run the benchmarks? II) what are the most important hardware and software features? III) what are the best predictive models and hyperparameters, in terms of prediction error and time? and IV) can we predict the performance of future systems using the past data? We present how to prepare data, select features, tune hyperparameters and evaluate regression models based on Multi-Task Elastic-Net, Decision Tree, Random Forest, and Multi-Layer Perceptron neural networks estimators. Feature selection is performed in three steps: removing zero variance features, removing highly correlated features, and Recursive Feature Elimination based on different feature importance metrics: elastic-net coefficients, tree-based importance measures and Permutation Importance. We select the best models using grid search on the hyperparameter space, and finally, compare and evaluate the performance of the models. We show that tree-based models with the original 29 features provide accurate predictions with an average error of less than 4%. The average error of faster Decision Tree and Random Forest models with 10 features is still below 6% and 5% respectively.
引用
收藏
页码:11994 / 12011
页数:18
相关论文
共 50 条
  • [21] Comparative Analysis of Machine Learning Models for Bankruptcy Prediction in the Context of Pakistani Companies
    Mate, Domician
    Raza, Hassan
    Ahmad, Ishtiaq
    RISKS, 2023, 11 (10)
  • [22] Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models
    Kumar, Vijendra
    Kedam, Naresh
    Sharma, Kul Vaibhav
    Mehta, Darshan J.
    Caloiero, Tommaso
    WATER, 2023, 15 (14)
  • [23] Comparative analysis of feature selection and extraction methods for student performance prediction across different machine learning models
    Laakel Hemdanou, Abderrafik
    Lamarti Sefian, Mohammed
    Achtoun, Youssef
    Tahiri, Ismail
    Computers and Education: Artificial Intelligence, 2024, 7
  • [24] Implanted Knee Kinematics Prediction: comparative performance analysis of machine learning techniques
    Hossain, Belayat
    Morooka, Takatoshi
    Okuno, Makiko
    Nii, Manabu
    Yoshiya, Shinichi
    Kobashi, Syoji
    2018 JOINT 7TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2018 2ND INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2018, : 544 - 549
  • [25] Enhancing classification performance in imbalanced datasets: A comparative analysis of machine learning models
    Dube, Lindani
    Verster, Tanja
    DATA SCIENCE IN FINANCE AND ECONOMICS, 2023, 3 (04): : 354 - 379
  • [26] Performance Comparison of Machine Learning Models for Diabetes Prediction
    Cihan, Pinar
    Coskun, Hakan
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [27] Supervised machine learning models for student performance prediction
    Alachiotis, Nikolaos S.
    Kotsiantis, Sotiris
    Sakkopoulos, Evangelos
    Verykios, Vassilios S.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (01): : 93 - 106
  • [28] Comparative Analysis of Machine Learning Models for Predictive Analysis of Machine Failures
    Baldovino, Renann G.
    Camacho, Ken Sammuel I.
    Chua-Unsu, Megan Victoria Hillary Y.
    Go, Jed Leonard C.
    Munsayac, Francisco Emmanuel T. Jr, III
    Bugtai, Nilo T.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 288 - 293
  • [29] Comparative Analysis of Machine Learning Models for Prediction of Remaining Service Life of Flexible Pavement
    Nabipour, Narjes
    Karballaeezadeh, Nader
    Dineva, Adrienn
    Mosavi, Amir
    Mohammadzadeh, Danial S.
    Shamshirband, Shahaboddin
    MATHEMATICS, 2019, 7 (12)
  • [30] Advanced machine learning models development for suspended sediment prediction: comparative analysis study
    Achite, Mohammed
    Yaseen, Zaher Mundher
    Heddam, Salim
    Malik, Anurag
    Kisi, Ozgur
    GEOCARTO INTERNATIONAL, 2022, 37 (21) : 6116 - 6140